syntree/node/
node_impl.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
use core::fmt;
use core::mem::size_of;
use core::ops::Range;

use crate::flavor::Flavor;
use crate::links::Links;
use crate::node::{Ancestors, Children, Event, Siblings, Walk, WalkEvents};
use crate::pointer::Pointer;
use crate::span::Span;

/// A node in the tree.
///
/// # Type parameters and bounds
///
/// The three type parameters of the tree determines the following properties:
/// * `T` is the data stored in the tree.
/// * `F` determines the [Flavor] of the tree, defining numerical bounds of
///   spans stored in the tree.
///
/// To use the default values, use the [Builder::new][crate::Builder::new]
/// constructor.
///
/// [Empty]: crate::Empty
pub struct Node<'a, T, F>
where
    T: Copy,
    F: Flavor,
{
    links: &'a Links<T, F::Index, F::Pointer>,
    tree: &'a [Links<T, F::Index, F::Pointer>],
}

impl<'a, T, F> Node<'a, T, F>
where
    T: Copy,
    F: Flavor,
{
    pub(crate) const fn new(
        links: &'a Links<T, F::Index, F::Pointer>,
        tree: &'a [Links<T, F::Index, F::Pointer>],
    ) -> Self {
        Self { links, tree }
    }

    /// Access the data associated with the node.
    ///
    /// # Examples
    ///
    /// ```
    /// let tree = syntree::tree! {
    ///     "root" => {
    ///         ("number", 5),
    ///         ("ident", 3),
    ///     }
    /// };
    ///
    /// let root = tree.first().ok_or("missing root")?;
    /// assert_eq!(root.value(), "root");
    ///
    /// let number = root.first().ok_or("missing number")?;
    /// assert_eq!(number.value(), "number");
    ///
    /// let ident = number.next().ok_or("missing ident")?;
    /// assert_eq!(ident.value(), "ident");
    /// # Ok::<_, Box<dyn core::error::Error>>(())
    /// ```
    #[must_use]
    pub fn value(&self) -> T {
        self.links.data.get()
    }

    /// Replace the value of the node with a new one, returning the old value.
    ///
    /// # Examples
    ///
    /// ```
    /// let tree = syntree::tree! {
    ///     "root" => {
    ///         ("number", 5),
    ///         ("ident", 3),
    ///     }
    /// };
    ///
    /// let root = tree.first().ok_or("missing root")?;
    /// assert_eq!(root.value(), "root");
    ///
    /// let number = root.first().ok_or("missing number")?;
    /// assert_eq!(number.value(), "number");
    /// assert_eq!(number.replace("other"), "number");
    /// assert_eq!(number.value(), "other");
    ///
    /// let ident = number.next().ok_or("missing ident")?;
    /// assert_eq!(ident.value(), "ident");
    /// # Ok::<_, Box<dyn core::error::Error>>(())
    /// ```
    pub fn replace(&self, value: T) -> T {
        self.links.data.replace(value)
    }

    /// Check if the current node has children or not.
    ///
    /// Nodes without children are also known as tokens.
    ///
    /// # Examples
    ///
    /// ```
    /// let tree = syntree::tree! {
    ///     "root" => {
    ///         ("number", 5),
    ///         ("ident", 3),
    ///     }
    /// };
    ///
    /// let root = tree.first().ok_or("missing root")?;
    /// assert!(root.has_children());
    /// assert!(root.children().all(|n| !n.has_children()));
    /// # Ok::<_, Box<dyn core::error::Error>>(())
    /// ```
    #[must_use]
    pub const fn has_children(&self) -> bool {
        self.links.first.is_some()
    }

    /// Get the span of the current node. The span of a node is the complete
    /// span of all its children.
    ///
    /// # Examples
    ///
    /// ```
    /// use syntree::Span;
    ///
    /// let tree = syntree::tree! {
    ///     "root" => {
    ///         "number" => {
    ///             ("lit", 5)
    ///         },
    ///         "ident" => {
    ///             ("lit", 3)
    ///         }
    ///     },
    ///     "root2" => {
    ///         ("whitespace", 5)
    ///     }
    /// };
    ///
    /// let root = tree.first().ok_or("missing root")?;
    /// assert_eq!(root.span(), Span::new(0, 8));
    ///
    /// let root2 = root.next().ok_or("missing second root")?;
    /// assert_eq!(root2.span(), Span::new(8, 13));
    /// # Ok::<_, Box<dyn core::error::Error>>(())
    /// ```
    #[must_use]
    pub const fn span(&self) -> &Span<F::Index> {
        &self.links.span
    }

    /// Check if the current node is empty. In that it doesn't have any
    /// children.
    ///
    /// # Examples
    ///
    /// ```
    /// let mut tree = syntree::tree! {
    ///     "root",
    ///     "root2" => {
    ///         ("token2", 5)
    ///     }
    /// };
    ///
    /// let first = tree.first().ok_or("missing root")?;
    /// let last = first.next().ok_or("missing root2")?;
    ///
    /// assert!(first.is_empty());
    /// assert!(!last.is_empty());
    /// # Ok::<_, Box<dyn core::error::Error>>(())
    /// ```
    #[must_use]
    pub const fn is_empty(&self) -> bool {
        self.links.first.is_none()
    }

    /// Get the ancestors of this node.
    ///
    /// See [Ancestors] for documentation.
    #[must_use]
    pub fn ancestors(&self) -> Ancestors<'a, T, F> {
        Ancestors::new(Some(*self))
    }

    /// Get an iterator over the siblings of this node, including itself.
    ///
    /// See [Siblings] for documentation.
    #[must_use]
    pub fn siblings(&self) -> Siblings<'a, T, F> {
        Siblings::new(self.tree, self.links)
    }

    /// Get an iterator over the children of this node.
    ///
    /// See [Children] for documentation.
    #[must_use]
    pub fn children(&self) -> Children<'a, T, F> {
        Children::new(self.tree, self.links.first, self.links.last)
    }

    /// Walk the subtree forward starting with the first child of the current
    /// node.
    ///
    /// See [Walk] for documentation.
    #[must_use]
    pub fn walk(&self) -> Walk<'a, T, F> {
        Walk::new(self.tree, Some(self.id()), Event::Next)
    }

    /// Walk from the current node forwards and upwards through the tree.
    ///
    /// This does not include the current node in the walk.
    ///
    /// See [Walk] for documentation.
    #[must_use]
    pub fn walk_from(&self) -> Walk<'a, T, F> {
        Walk::new(self.tree, Some(self.id()), Event::Up)
    }

    /// Walk the node forwards in a depth-first fashion emitting events
    /// indicating how the rest of the tree is being traversed.
    ///
    /// See [`WalkEvents`] for documentation.
    #[must_use]
    pub fn walk_events(&self) -> WalkEvents<'a, T, F> {
        WalkEvents::new(self.tree, Some(self.id()), Event::Next)
    }
}

impl<'a, T, F> Node<'a, T, F>
where
    T: Copy,
    F: Flavor,
{
    /// Get immediate parent to this node.
    ///
    /// # Examples
    ///
    /// ```
    /// let tree = syntree::tree! {
    ///     "root" => {
    ///         "number" => {
    ///             ("lit", 5)
    ///         },
    ///         "ident" => {
    ///             ("lit", 3)
    ///         }
    ///     },
    ///     "root2" => {
    ///         ("whitespace", 5)
    ///     }
    /// };
    ///
    /// let root = tree.first().ok_or("missing root")?;
    /// assert_eq!(root.value(), "root");
    /// assert!(root.parent().is_none());
    ///
    /// let number = root.first().ok_or("missing number")?;
    /// assert_eq!(number.value(), "number");
    ///
    /// let root = number.parent().ok_or("missing parent")?;
    /// assert_eq!(root.value(), "root");
    /// # Ok::<_, Box<dyn core::error::Error>>(())
    /// ```
    #[must_use]
    pub fn parent(&self) -> Option<Node<'a, T, F>> {
        self.node_at(self.links.parent?)
    }

    /// Get the previous sibling.
    ///
    /// # Examples
    ///
    /// ```
    /// let tree = syntree::tree! {
    ///     "root" => {
    ///         "number" => {
    ///             ("lit", 5)
    ///         },
    ///         "ident" => {
    ///             ("lit", 3)
    ///         }
    ///     }
    /// };
    ///
    /// let number = tree.first().and_then(|n| n.first()).ok_or("missing number")?;
    /// assert_eq!(number.value(), "number");
    /// assert!(number.prev().is_none());
    ///
    /// let ident = number.next().ok_or("missing ident")?;
    /// assert_eq!(ident.value(), "ident");
    ///
    /// let number = ident.prev().ok_or("missing number")?;
    /// assert_eq!(number.value(), "number");
    /// # Ok::<_, Box<dyn core::error::Error>>(())
    /// ```
    #[must_use]
    pub fn prev(&self) -> Option<Node<'a, T, F>> {
        self.node_at(self.links.prev?)
    }

    /// Get the next sibling.
    ///
    /// # Examples
    ///
    /// ```
    /// let tree = syntree::tree! {
    ///     "root" => {
    ///         "number" => {
    ///             ("lit", 5)
    ///         },
    ///         "ident" => {
    ///             ("lit", 3)
    ///         }
    ///     }
    /// };
    ///
    /// let root = tree.first().ok_or("missing root")?;
    /// assert_eq!(root.value(), "root");
    ///
    /// let number = root.first().ok_or("missing second root")?;
    /// assert_eq!(number.value(), "number");
    ///
    /// let ident = number.next().ok_or("missing second root")?;
    /// assert_eq!(ident.value(), "ident");
    /// # Ok::<_, Box<dyn core::error::Error>>(())
    /// ```
    #[must_use]
    pub fn next(&self) -> Option<Node<'a, T, F>> {
        self.node_at(self.links.next?)
    }

    /// Get the first child node.
    ///
    /// # Examples
    ///
    /// ```
    /// let tree = syntree::tree! {
    ///     "root" => {
    ///         "number" => {
    ///             ("lit", 5)
    ///         },
    ///         "ident" => {
    ///             ("lit", 3)
    ///         }
    ///     },
    ///     "root2" => {
    ///         ("whitespace", 5)
    ///     }
    /// };
    ///
    /// let root = tree.first().ok_or("missing root")?;
    /// assert_eq!(root.value(), "root");
    ///
    /// let number = root.first().ok_or("missing number")?;
    /// assert_eq!(number.value(), "number");
    /// # Ok::<_, Box<dyn core::error::Error>>(())
    /// ```
    #[must_use]
    pub fn first(&self) -> Option<Node<'a, T, F>> {
        self.node_at(self.links.first?)
    }

    /// Get the last child node.
    ///
    /// # Examples
    ///
    /// ```
    /// let tree = syntree::tree! {
    ///     "root" => {
    ///         "number" => {
    ///             ("lit", 5)
    ///         },
    ///         "ident" => {
    ///             ("lit", 3)
    ///         }
    ///     },
    ///     "root2" => {
    ///         ("whitespace", 5)
    ///     }
    /// };
    ///
    /// let root2 = tree.last().ok_or("missing root2")?;
    /// assert_eq!(root2.value(), "root2");
    ///
    /// let whitespace = root2.last().ok_or("missing whitespace")?;
    /// assert_eq!(whitespace.value(), "whitespace");
    /// # Ok::<_, Box<dyn core::error::Error>>(())
    /// ```
    #[must_use]
    pub fn last(&self) -> Option<Node<'a, T, F>> {
        self.node_at(self.links.last?)
    }

    /// Find a preceeding node which matches the given predicate.
    ///
    /// A "preceeding node" is one which constitutes tokens the immediately
    /// preceedes the ones of the current node, so this function scans first the
    /// parents of the current node for a matching [`Node::prev`] sibling, and
    /// then traverses that matches [`Node::last`].
    ///
    /// # Examples
    ///
    /// ```
    /// let tree = syntree::tree! {
    ///     "root" => {
    ///         "child1" => {
    ///             ("token2", 1),
    ///             "child2" => {
    ///                 ("token1", 2)
    ///             }
    ///         },
    ///         "child3" => {
    ///             "child4" => {
    ///                 ("token1", 4),
    ///             }
    ///         }
    ///     }
    /// };
    ///
    /// let node = tree.node_with_range(3..3).ok_or("missing 0")?;
    /// assert_eq!(node.value(), "child4");
    ///
    /// let found = node.find_preceding(|n| n.span().end == 3 && n.has_children());
    /// let found = found.expect("expected preceeding node");
    /// assert_eq!(found.value(), "child2");
    /// # Ok::<_, Box<dyn core::error::Error>>(())
    /// ```
    pub fn find_preceding<P>(&self, mut predicate: P) -> Option<Node<'a, T, F>>
    where
        P: FnMut(Node<'a, T, F>) -> bool,
    {
        // Step 1: Scan upwards until we find a previous s
        let mut n = *self;

        let mut n = loop {
            let Some(prev) = n.prev() else {
                n = n.parent()?;
                continue;
            };

            if predicate(prev) {
                break prev;
            }

            n = n.parent()?;
        };

        // Step 2: Scan last node while it matches the predicate.
        loop {
            let Some(last) = n.last() else {
                return Some(n);
            };

            if !predicate(last) {
                return Some(n);
            }

            n = last;
        }
    }

    fn node_at(&self, id: F::Pointer) -> Option<Node<'a, T, F>> {
        let cur = self.tree.get(id.get())?;

        Some(Self {
            links: cur,
            tree: self.tree,
        })
    }

    /// Get the identifier of the current node.
    ///
    /// Note that an id might be re-used across different trees. This behavior
    /// is never unsafe, but is not well-defined.
    ///
    /// This can be used to register a change in a [`ChangeSet`] later.
    ///
    /// ```
    /// let mut tree = syntree::Builder::new();
    /// let root_id = tree.open("root")?;
    /// let child_id = tree.open("child")?;
    /// tree.close()?;
    ///
    /// let child2_id = tree.open("child2")?;
    /// tree.close()?;
    /// tree.close()?;
    ///
    /// let tree = tree.build()?;
    /// let root = tree.first().ok_or("missing root")?;
    /// let child = root.first().ok_or("missing child")?;
    /// let child2 = child.next().ok_or("missing child2")?;
    ///
    /// assert_eq!(root.id(), root_id);
    /// assert_eq!(child.id(), child_id);
    /// assert_eq!(child2.id(), child2_id);
    /// # Ok::<_, Box<dyn core::error::Error>>(())
    /// ```
    ///
    /// [`ChangeSet`]: crate::edit::ChangeSet
    #[must_use]
    pub fn id(&self) -> F::Pointer {
        // We're relying on the knowledge that the provided links reference is
        // inside of the tree of links.
        let current = self.links as *const _ as usize;
        let base = self.tree.as_ptr() as usize;
        let id = (current - base) / size_of::<Links<T, F::Index, F::Pointer>>();
        debug_assert!(id < self.tree.len(), "identifier outside of tree length");
        // SAFETY: It's impossible to construct a node with an offset which is
        // not a legal `NonMax`.
        unsafe { F::Pointer::new_unchecked(id) }
    }
}

impl<T, F> Node<'_, T, F>
where
    T: Copy,
    F: Flavor,
{
    /// Access the [Span] of the node as a [Range].
    ///
    /// # Examples
    ///
    /// ```
    /// let tree = syntree::tree! {
    ///     "root" => {
    ///         "number" => {
    ///             ("lit", 5)
    ///         },
    ///         "ident" => {
    ///             ("lit", 3)
    ///         }
    ///     },
    ///     "root2" => {
    ///         ("whitespace", 5)
    ///     }
    /// };
    ///
    /// let root = tree.first().ok_or("missing root")?;
    /// assert_eq!(root.range(), 0..8);
    ///
    /// let root2 = root.next().ok_or("missing second root")?;
    /// assert_eq!(root2.range(), 8..13);
    /// # Ok::<_, Box<dyn core::error::Error>>(())
    /// ```
    #[must_use]
    #[inline]
    pub fn range(&self) -> Range<usize> {
        self.links.span.range()
    }
}

impl<T, F> fmt::Debug for Node<'_, T, F>
where
    T: Copy + fmt::Debug,
    F: Flavor<Index: fmt::Debug>,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Node")
            .field("data", &self.links.data.get())
            .field("span", &self.links.span)
            .finish()
    }
}

impl<T, F> Clone for Node<'_, T, F>
where
    T: Copy,
    F: Flavor,
{
    #[inline]
    fn clone(&self) -> Self {
        *self
    }
}

impl<T, F> Copy for Node<'_, T, F>
where
    T: Copy,
    F: Flavor,
{
}

impl<T, A, B> PartialEq<Node<'_, T, A>> for Node<'_, T, B>
where
    T: Copy + PartialEq,
    A: Flavor,
    B: Flavor<Index: PartialEq<A::Index>>,
{
    fn eq(&self, other: &Node<'_, T, A>) -> bool {
        self.links.data.get() == other.links.data.get() && self.links.span == other.links.span
    }
}

impl<T, F> Eq for Node<'_, T, F>
where
    T: Copy + Eq,
    F: Flavor<Index: Eq>,
{
}