rune_alloc/raw_vec.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
use core::alloc::{Layout, LayoutError};
use core::cmp;
use core::mem::{self, ManuallyDrop, MaybeUninit};
use core::slice;
use crate::alloc::SizedTypeProperties;
use crate::alloc::{AllocError, Allocator, Global};
use crate::boxed::Box;
use crate::error::Error;
use crate::ptr::{self, NonNull, Unique};
enum AllocInit {
/// The contents of the new memory are uninitialized.
Uninitialized,
/// The new memory is guaranteed to be zeroed.
#[cfg(rune_nightly)]
Zeroed,
}
/// A low-level utility for more ergonomically allocating, reallocating, and deallocating
/// a buffer of memory on the heap without having to worry about all the corner cases
/// involved. This type is excellent for building your own data structures like Vec and VecDeque.
/// In particular:
///
/// * Produces `Unique::dangling()` on zero-sized types.
/// * Produces `Unique::dangling()` on zero-length allocations.
/// * Avoids freeing `Unique::dangling()`.
/// * Catches all overflows in capacity computations (promotes them to "capacity overflow" panics).
/// * Guards against 32-bit systems allocating more than isize::MAX bytes.
/// * Guards against overflowing your length.
/// * Calls `handle_alloc_error` for fallible allocations.
/// * Contains a `ptr::Unique` and thus endows the user with all related benefits.
/// * Uses the excess returned from the allocator to use the largest available capacity.
///
/// This type does not in anyway inspect the memory that it manages. When dropped it *will*
/// free its memory, but it *won't* try to drop its contents. It is up to the user of `RawVec`
/// to handle the actual things *stored* inside of a `RawVec`.
///
/// Note that the excess of a zero-sized types is always infinite, so `capacity()` always returns
/// `usize::MAX`. This means that you need to be careful when round-tripping this type with a
/// `Box<[T]>`, since `capacity()` won't yield the length.
#[allow(missing_debug_implementations)]
pub(crate) struct RawVec<T, A: Allocator = Global> {
ptr: Unique<T>,
cap: usize,
alloc: A,
}
impl<T> RawVec<T, Global> {
/// HACK(Centril): This exists because stable `const fn` can only call
/// stable `const fn`, so they cannot call `Self::new()`.
///
/// If you change `RawVec<T>::new` or dependencies, please take care to not
/// introduce anything that would truly const-call something unstable.
pub const NEW: Self = Self::new();
/// Creates the biggest possible `RawVec` (on the system heap)
/// without allocating. If `T` has positive size, then this makes a
/// `RawVec` with capacity `0`. If `T` is zero-sized, then it makes a
/// `RawVec` with capacity `usize::MAX`. Useful for implementing
/// delayed allocation.
#[must_use]
pub const fn new() -> Self {
Self::new_in(Global)
}
}
impl<T, A: Allocator> RawVec<T, A> {
// Tiny Vecs are dumb. Skip to:
// - 8 if the element size is 1, because any heap allocators is likely
// to round up a request of less than 8 bytes to at least 8 bytes.
// - 4 if elements are moderate-sized (<= 1 KiB).
// - 1 otherwise, to avoid wasting too much space for very short Vecs.
pub(crate) const MIN_NON_ZERO_CAP: usize = if mem::size_of::<T>() == 1 {
8
} else if mem::size_of::<T>() <= 1024 {
4
} else {
1
};
/// Like `new`, but parameterized over the choice of allocator for
/// the returned `RawVec`.
pub const fn new_in(alloc: A) -> Self {
// `cap: 0` means "unallocated". zero-sized types are ignored.
Self {
ptr: Unique::dangling(),
cap: 0,
alloc,
}
}
/// Like `with_capacity`, but parameterized over the choice of
/// allocator for the returned `RawVec`.
#[inline]
pub(crate) fn try_with_capacity_in(capacity: usize, alloc: A) -> Result<Self, Error> {
Self::try_allocate_in(capacity, AllocInit::Uninitialized, alloc)
}
/// Like `with_capacity_zeroed`, but parameterized over the choice
/// of allocator for the returned `RawVec`.
#[inline]
#[cfg(rune_nightly)]
pub(crate) fn try_with_capacity_zeroed_in(capacity: usize, alloc: A) -> Result<Self, Error> {
Self::try_allocate_in(capacity, AllocInit::Zeroed, alloc)
}
/// Converts the entire buffer into `Box<[MaybeUninit<T>]>` with the specified `len`.
///
/// Note that this will correctly reconstitute any `cap` changes
/// that may have been performed. (See description of type for details.)
///
/// # Safety
///
/// * `len` must be greater than or equal to the most recently requested capacity, and
/// * `len` must be less than or equal to `self.capacity()`.
///
/// Note, that the requested capacity and `self.capacity()` could differ, as
/// an allocator could overallocate and return a greater memory block than requested.
pub unsafe fn into_box(self, len: usize) -> Box<[MaybeUninit<T>], A> {
// Sanity-check one half of the safety requirement (we cannot check the other half).
debug_assert!(
len <= self.capacity(),
"`len` must be smaller than or equal to `self.capacity()`"
);
let me = ManuallyDrop::new(self);
unsafe {
let slice = slice::from_raw_parts_mut(me.ptr() as *mut MaybeUninit<T>, len);
Box::from_raw_in(slice, ptr::read(&me.alloc))
}
}
fn try_allocate_in(capacity: usize, init: AllocInit, alloc: A) -> Result<Self, Error> {
// Don't allocate here because `Drop` will not deallocate when `capacity` is 0.
if T::IS_ZST || capacity == 0 {
Ok(Self::new_in(alloc))
} else {
// We avoid `unwrap_or_else` here because it bloats the amount of
// LLVM IR generated.
let layout = match Layout::array::<T>(capacity) {
Ok(layout) => layout,
Err(_) => return Err(Error::CapacityOverflow),
};
match alloc_guard(layout.size()) {
Ok(_) => {}
Err(_) => return Err(Error::CapacityOverflow),
}
let ptr = match init {
AllocInit::Uninitialized => alloc.allocate(layout)?,
#[cfg(rune_nightly)]
AllocInit::Zeroed => alloc.allocate_zeroed(layout)?,
};
// Allocators currently return a `NonNull<[u8]>` whose length
// matches the size requested. If that ever changes, the capacity
// here should change to `ptr.len() / mem::size_of::<T>()`.
Ok(Self {
ptr: unsafe { Unique::new_unchecked(ptr.cast().as_ptr()) },
cap: capacity,
alloc,
})
}
}
/// Reconstitutes a `RawVec` from a pointer, capacity, and allocator.
///
/// # Safety
///
/// The `ptr` must be allocated (via the given allocator `alloc`), and with the given
/// `capacity`.
/// The `capacity` cannot exceed `isize::MAX` for sized types. (only a concern on 32-bit
/// systems). ZST vectors may have a capacity up to `usize::MAX`.
/// If the `ptr` and `capacity` come from a `RawVec` created via `alloc`, then this is
/// guaranteed.
#[inline]
pub unsafe fn from_raw_parts_in(ptr: *mut T, capacity: usize, alloc: A) -> Self {
Self {
ptr: unsafe { Unique::new_unchecked(ptr) },
cap: capacity,
alloc,
}
}
/// Gets a raw pointer to the start of the allocation. Note that this is
/// `Unique::dangling()` if `capacity == 0` or `T` is zero-sized. In the former case, you must
/// be careful.
#[inline]
pub(crate) fn ptr(&self) -> *mut T {
self.ptr.as_ptr()
}
/// Gets the capacity of the allocation.
///
/// This will always be `usize::MAX` if `T` is zero-sized.
#[inline(always)]
pub(crate) fn capacity(&self) -> usize {
if T::IS_ZST {
usize::MAX
} else {
self.cap
}
}
/// Returns a shared reference to the allocator backing this `RawVec`.
pub(crate) fn allocator(&self) -> &A {
&self.alloc
}
fn current_memory(&self) -> Option<(NonNull<u8>, Layout)> {
if T::IS_ZST || self.cap == 0 {
None
} else {
// We could use Layout::array here which ensures the absence of isize and usize overflows
// and could hypothetically handle differences between stride and size, but this memory
// has already been allocated so we know it can't overflow and currently rust does not
// support such types. So we can do better by skipping some checks and avoid an unwrap.
assert!(mem::size_of::<T>() % mem::align_of::<T>() == 0);
unsafe {
let align = mem::align_of::<T>();
let size = mem::size_of::<T>().wrapping_mul(self.cap);
let layout = Layout::from_size_align_unchecked(size, align);
Some((self.ptr.cast().into(), layout))
}
}
}
/// Ensures that the buffer contains at least enough space to hold `len +
/// additional` elements. If it doesn't already have enough capacity, will
/// reallocate enough space plus comfortable slack space to get amortized
/// *O*(1) behavior. Will limit this behavior if it would needlessly cause
/// itself to panic.
///
/// If `len` exceeds `self.capacity()`, this may fail to actually allocate
/// the requested space. This is not really unsafe, but the unsafe
/// code *you* write that relies on the behavior of this function may break.
///
/// This is ideal for implementing a bulk-push operation like `extend`.
///
/// # Panics
///
/// Panics if the new capacity exceeds `isize::MAX` bytes.
///
/// # Aborts
///
/// Aborts on OOM.
pub(crate) fn try_reserve(&mut self, len: usize, additional: usize) -> Result<(), Error> {
if self.needs_to_grow(len, additional) {
self.grow_amortized(len, additional)?;
}
Ok(())
}
/// A specialized version of `reserve()` used only by the hot and
/// oft-instantiated `Vec::push()`, which does its own capacity check.
pub(crate) fn try_reserve_for_push(&mut self, len: usize) -> Result<(), Error> {
self.grow_amortized(len, 1)
}
/// The same as `reserve_exact`, but returns on errors instead of panicking or aborting.
pub(crate) fn try_reserve_exact(&mut self, len: usize, additional: usize) -> Result<(), Error> {
if self.needs_to_grow(len, additional) {
self.grow_exact(len, additional)
} else {
Ok(())
}
}
/// Shrinks the buffer down to the specified capacity. If the given amount
/// is 0, actually completely deallocates.
///
/// # Aborts
///
/// Aborts on OOM.
pub(crate) fn try_shrink_to_fit(&mut self, cap: usize) -> Result<(), Error> {
self.shrink(cap)
}
}
impl<T, A: Allocator> RawVec<T, A> {
/// Returns if the buffer needs to grow to fulfill the needed extra capacity.
/// Mainly used to make inlining reserve-calls possible without inlining `grow`.
fn needs_to_grow(&self, len: usize, additional: usize) -> bool {
additional > self.capacity().wrapping_sub(len)
}
fn set_ptr_and_cap(&mut self, ptr: NonNull<[u8]>, cap: usize) {
// Allocators currently return a `NonNull<[u8]>` whose length matches
// the size requested. If that ever changes, the capacity here should
// change to `ptr.len() / mem::size_of::<T>()`.
self.ptr = unsafe { Unique::new_unchecked(ptr.cast().as_ptr()) };
self.cap = cap;
}
// This method is usually instantiated many times. So we want it to be as
// small as possible, to improve compile times. But we also want as much of
// its contents to be statically computable as possible, to make the
// generated code run faster. Therefore, this method is carefully written
// so that all of the code that depends on `T` is within it, while as much
// of the code that doesn't depend on `T` as possible is in functions that
// are non-generic over `T`.
fn grow_amortized(&mut self, len: usize, additional: usize) -> Result<(), Error> {
// This is ensured by the calling contexts.
debug_assert!(additional > 0);
if T::IS_ZST {
// Since we return a capacity of `usize::MAX` when `elem_size` is
// 0, getting to here necessarily means the `RawVec` is overfull.
return Err(Error::CapacityOverflow);
}
// Nothing we can really do about these checks, sadly.
let required_cap = len.checked_add(additional).ok_or(Error::CapacityOverflow)?;
// This guarantees exponential growth. The doubling cannot overflow
// because `cap <= isize::MAX` and the type of `cap` is `usize`.
let cap = cmp::max(self.cap * 2, required_cap);
let cap = cmp::max(Self::MIN_NON_ZERO_CAP, cap);
let new_layout = Layout::array::<T>(cap);
// `finish_grow` is non-generic over `T`.
let ptr = finish_grow(new_layout, self.current_memory(), &self.alloc)?;
self.set_ptr_and_cap(ptr, cap);
Ok(())
}
// The constraints on this method are much the same as those on
// `grow_amortized`, but this method is usually instantiated less often so
// it's less critical.
fn grow_exact(&mut self, len: usize, additional: usize) -> Result<(), Error> {
if T::IS_ZST {
// Since we return a capacity of `usize::MAX` when the type size is
// 0, getting to here necessarily means the `RawVec` is overfull.
return Err(Error::CapacityOverflow);
}
let cap = len.checked_add(additional).ok_or(Error::CapacityOverflow)?;
let new_layout = Layout::array::<T>(cap);
// `finish_grow` is non-generic over `T`.
let ptr = finish_grow(new_layout, self.current_memory(), &self.alloc)?;
self.set_ptr_and_cap(ptr, cap);
Ok(())
}
fn shrink(&mut self, cap: usize) -> Result<(), Error> {
// See current_memory() why this assert is here
assert!(mem::size_of::<T>() % mem::align_of::<T>() == 0);
assert!(
cap <= self.capacity(),
"Tried to shrink to a larger capacity"
);
let (ptr, layout) = if let Some(mem) = self.current_memory() {
mem
} else {
return Ok(());
};
// If shrinking to 0, deallocate the buffer. We don't reach this point
// for the T::IS_ZST case since current_memory() will have returned
// None.
if cap == 0 {
unsafe { self.alloc.deallocate(ptr, layout) };
self.ptr = Unique::dangling();
self.cap = 0;
} else {
let ptr = unsafe {
// `Layout::array` cannot overflow here because it would have
// overflowed earlier when capacity was larger.
let new_size = mem::size_of::<T>().wrapping_mul(cap);
let new_layout = Layout::from_size_align_unchecked(new_size, layout.align());
self.alloc
.shrink(ptr, layout, new_layout)
.map_err(|_| AllocError { layout: new_layout })?
};
self.set_ptr_and_cap(ptr, cap);
}
Ok(())
}
}
// This function is outside `RawVec` to minimize compile times. See the comment
// above `RawVec::grow_amortized` for details. (The `A` parameter isn't
// significant, because the number of different `A` types seen in practice is
// much smaller than the number of `T` types.)
#[inline(never)]
fn finish_grow<A>(
new_layout: Result<Layout, LayoutError>,
current_memory: Option<(NonNull<u8>, Layout)>,
alloc: &A,
) -> Result<NonNull<[u8]>, Error>
where
A: Allocator,
{
// Check for the error here to minimize the size of `RawVec::grow_*`.
let new_layout = new_layout.map_err(|_| Error::CapacityOverflow)?;
alloc_guard(new_layout.size())?;
let memory = if let Some((ptr, old_layout)) = current_memory {
debug_assert_eq!(old_layout.align(), new_layout.align());
unsafe {
// The allocator checks for alignment equality
debug_assert!(old_layout.align() == new_layout.align());
alloc.grow(ptr, old_layout, new_layout)
}
} else {
alloc.allocate(new_layout)
};
memory.map_err(|_| AllocError { layout: new_layout }.into())
}
#[cfg(not(rune_nightly))]
impl<T, A: Allocator> Drop for RawVec<T, A> {
/// Frees the memory owned by the `RawVec` *without* trying to drop its contents.
fn drop(&mut self) {
if let Some((ptr, layout)) = self.current_memory() {
unsafe { self.alloc.deallocate(ptr, layout) }
}
}
}
#[cfg(rune_nightly)]
unsafe impl<#[may_dangle] T, A: Allocator> Drop for RawVec<T, A> {
/// Frees the memory owned by the `RawVec` *without* trying to drop its contents.
fn drop(&mut self) {
if let Some((ptr, layout)) = self.current_memory() {
unsafe { self.alloc.deallocate(ptr, layout) }
}
}
}
// We need to guarantee the following:
// * We don't ever allocate `> isize::MAX` byte-size objects.
// * We don't overflow `usize::MAX` and actually allocate too little.
//
// On 64-bit we just need to check for overflow since trying to allocate
// `> isize::MAX` bytes will surely fail. On 32-bit and 16-bit we need to add
// an extra guard for this in case we're running on a platform which can use
// all 4GB in user-space, e.g., PAE or x32.
#[inline]
fn alloc_guard(alloc_size: usize) -> Result<(), Error> {
if usize::BITS < 64 && alloc_size > isize::MAX as usize {
Err(Error::CapacityOverflow)
} else {
Ok(())
}
}