syntree/edit.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
//! Types associated with performing immutable editing of a tree.
use core::cell::Cell;
use alloc::vec::Vec;
use std::collections::HashMap;
use crate::error::Error;
use crate::flavor::{Flavor, Storage};
use crate::index::{Index, TreeIndex};
use crate::links::Links;
use crate::node::Node;
use crate::pointer::Pointer;
use crate::span::Span;
use crate::tree::Tree;
#[derive(Debug)]
pub(crate) enum Change {
/// Delete the given node.
Delete,
}
/// A recorded set of tree modifications.
///
/// You can use [`ChangeSet::modify`] to construct a new modified tree from an
/// existing one.
///
/// # Examples
///
/// ```
/// use syntree::edit::ChangeSet;
///
/// let tree = syntree::tree! {
/// "root" => {
/// "child" => {
/// ("lit", 1),
/// ("lit", 2),
/// },
/// ("whitespace", 3),
/// }
/// };
///
/// let child = tree.first().and_then(|n| n.first()).ok_or("missing child")?;
///
/// let mut change_set = ChangeSet::new();
/// change_set.remove(child.id());
///
/// assert_eq!(
/// change_set.modify(&tree)?,
/// syntree::tree! {
/// "root" => {
/// ("whitespace", 3)
/// }
/// }
/// );
///
/// let lit = child.first().ok_or("missing lit")?;
///
/// let mut change_set = ChangeSet::new();
/// change_set.remove(lit.id());
///
/// assert_eq!(
/// change_set.modify(&tree)?,
/// syntree::tree! {
/// "root" => {
/// "child" => {
/// ("lit", 2),
/// },
/// ("whitespace", 3)
/// }
/// }
/// );
/// # Ok::<_, Box<dyn core::error::Error>>(())
/// ```
pub struct ChangeSet<T, F>
where
T: Copy,
F: Flavor,
{
changes: HashMap<F::Pointer, Change>,
#[allow(unused)]
trees: Vec<Tree<T, F>>,
}
impl<T, F> ChangeSet<T, F>
where
T: Copy,
F: Flavor,
{
/// Construct a new empty [`ChangeSet`].
#[must_use]
pub fn new() -> Self {
Self::default()
}
}
impl<T, F> ChangeSet<T, F>
where
T: Copy,
F: Flavor,
{
/// Register a node removal in the changeset. Only one kind of modification
/// for a given node will be preserved.
///
/// # Examples
///
/// ```
/// use syntree::edit::ChangeSet;
///
/// let tree = syntree::tree! {
/// "root" => {
/// "child" => {
/// ("lit", 1),
/// ("lit", 2),
/// },
/// ("whitespace", 3),
/// }
/// };
///
/// let child = tree.first().and_then(|n| n.first()).ok_or("missing child")?;
///
/// let mut change_set = ChangeSet::new();
/// change_set.remove(child.id());
///
/// assert_eq!(
/// change_set.modify(&tree)?,
/// syntree::tree! {
/// "root" => {
/// ("whitespace", 3)
/// }
/// }
/// );
/// # Ok::<_, Box<dyn core::error::Error>>(())
/// ```
pub fn remove(&mut self, id: F::Pointer) {
self.changes.insert(id, Change::Delete);
}
/// Construct a modified tree where the recorded modifications have been
/// applied.
///
/// # Errors
///
/// Errors with [`Error::Overflow`] in case we run out of node
/// identifiers.
///
/// # Examples
///
/// ```
/// use syntree::edit::ChangeSet;
///
/// let tree = syntree::tree! {
/// "root" => {
/// "child" => {
/// ("lit", 1),
/// ("lit", 2),
/// },
/// ("whitespace", 3),
/// }
/// };
///
/// let child = tree.first().and_then(|n| n.first()).ok_or("missing child")?;
/// let mut change_set = ChangeSet::new();
/// change_set.remove(child.id());
///
/// assert_eq!(
/// change_set.modify(&tree)?,
/// syntree::tree! {
/// "root" => {
/// ("whitespace", 3)
/// }
/// }
/// );
/// # Ok::<_, Box<dyn core::error::Error>>(())
/// ```
pub fn modify(&mut self, tree: &Tree<T, F>) -> Result<Tree<T, F>, Error<F::Error>> {
let mut output = Tree::<T, F>::with_capacity(tree.capacity())?;
let mut refactor = RefactorWalk {
parents: Vec::new(),
prev: None,
};
let mut cursor = F::Index::EMPTY;
// The specified sub-tree depth is being deleted.
let mut current = tree.first().map(|node| (node, false));
while let Some((mut node, mut first)) = current.take() {
let node_id = F::Pointer::new(output.len()).ok_or(Error::Overflow)?;
if let Some(change) = self.changes.get(&node_id) {
match change {
Change::Delete => {
let Some(skipped) = refactor.skip_subtree(node, first) else {
continue;
};
node = skipped.node;
first = skipped.first;
}
}
}
if refactor.parents.is_empty() {
let (first, last) = output.links_mut();
if first.is_none() {
*first = Some(node_id);
}
*last = Some(node_id);
}
// Since we are the first node in the sequence we're obligated to
// set the first child of the parent.
let prev = if first {
None
} else {
let prev = refactor.prev.take();
if let Some(prev) = prev.and_then(|id| output.get_mut(id)) {
prev.next = Some(node_id);
}
prev
};
let span = if !node.has_children() && !node.span().is_empty() {
output.indexes_mut().push(TreeIndex {
index: cursor,
id: node_id,
})?;
let start = cursor;
cursor = cursor
.checked_add_len(node.span().len())
.ok_or(Error::Overflow)?;
Span::new(start, cursor)
} else {
Span::point(cursor)
};
let parent = refactor.parents.last().map(|n| n.1);
if let Some(parent) = parent.and_then(|id| output.get_mut(id)) {
if parent.first.is_none() {
parent.first = Some(node_id);
}
parent.last = Some(node_id);
parent.span.end = span.end;
}
output.push(Links {
data: Cell::new(node.value()),
span,
parent,
prev,
next: None,
first: None,
last: None,
})?;
current = refactor.step(node, node_id);
}
output.span_mut().end = cursor;
Ok(output)
}
}
impl<T, F> Default for ChangeSet<T, F>
where
T: Copy,
F: Flavor,
{
#[inline]
fn default() -> Self {
Self {
changes: HashMap::new(),
trees: Vec::new(),
}
}
}
/// The state of the skipped subtree.
struct Skipped<'a, T, F>
where
T: Copy,
F: Flavor,
{
node: Node<'a, T, F>,
first: bool,
}
struct RefactorWalk<'a, T, F>
where
T: Copy,
F: Flavor,
{
parents: Vec<(Node<'a, T, F>, F::Pointer)>,
prev: Option<F::Pointer>,
}
impl<'a, T, F> RefactorWalk<'a, T, F>
where
T: Copy,
F: Flavor,
{
fn skip_subtree(&mut self, node: Node<'a, T, F>, first: bool) -> Option<Skipped<'a, T, F>> {
if let Some(next) = node.next() {
return Some(Skipped { node: next, first });
}
let (node, parent_id) = self.parents.pop()?;
self.prev = Some(parent_id);
Some(Skipped { node, first: false })
}
/// Advance the iteration.
fn step(
&mut self,
node: Node<'a, T, F>,
node_id: F::Pointer,
) -> Option<(Node<'a, T, F>, bool)> {
if let Some(next) = node.first() {
self.parents.push((node, node_id));
return Some((next, true));
}
if let Some(next) = node.next() {
self.prev = Some(node_id);
return Some((next, false));
}
while let Some((parent, prev_id)) = self.parents.pop() {
if let Some(next) = parent.next() {
self.prev = Some(prev_id);
return Some((next, false));
}
}
None
}
}