rune_alloc/vec/drain.rs
1use crate::alloc::SizedTypeProperties;
2use crate::alloc::{Allocator, Global};
3use crate::ptr::{self, NonNull};
4
5use core::fmt;
6use core::iter::FusedIterator;
7use core::mem::{self, ManuallyDrop};
8use core::slice::{self};
9
10use super::Vec;
11
12/// A draining iterator for `Vec<T>`.
13///
14/// This `struct` is created by [`Vec::drain`].
15/// See its documentation for more.
16///
17/// # Example
18///
19/// ```
20/// let mut v = vec![0, 1, 2];
21/// let iter: std::vec::Drain<'_, _> = v.drain(..);
22/// ```
23pub struct Drain<'a, T, A = Global>
24where
25 T: 'a,
26 A: Allocator + 'a,
27{
28 /// Index of tail to preserve
29 pub(super) tail_start: usize,
30 /// Length of tail
31 pub(super) tail_len: usize,
32 /// Current remaining range to remove
33 pub(super) iter: slice::Iter<'a, T>,
34 pub(super) vec: NonNull<Vec<T, A>>,
35}
36
37impl<T, A> fmt::Debug for Drain<'_, T, A>
38where
39 T: fmt::Debug,
40 A: Allocator,
41{
42 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
43 f.debug_tuple("Drain").field(&self.iter.as_slice()).finish()
44 }
45}
46
47impl<T, A> Drain<'_, T, A>
48where
49 A: Allocator,
50{
51 /// Returns the remaining items of this iterator as a slice.
52 ///
53 /// # Examples
54 ///
55 /// ```
56 /// let mut vec = vec!['a', 'b', 'c'];
57 /// let mut drain = vec.drain(..);
58 /// assert_eq!(drain.as_slice(), &['a', 'b', 'c']);
59 /// let _ = drain.next().unwrap();
60 /// assert_eq!(drain.as_slice(), &['b', 'c']);
61 /// ```
62 #[must_use]
63 pub fn as_slice(&self) -> &[T] {
64 self.iter.as_slice()
65 }
66
67 /// Returns a reference to the underlying allocator.
68 #[must_use]
69 #[inline]
70 pub fn allocator(&self) -> &A {
71 unsafe { self.vec.as_ref().allocator() }
72 }
73
74 /// Keep unyielded elements in the source `Vec`.
75 ///
76 /// # Examples
77 ///
78 /// ```
79 /// use rune::alloc::try_vec;
80 ///
81 /// let mut vec = try_vec!['a', 'b', 'c'];
82 /// let mut drain = vec.drain(..);
83 ///
84 /// assert_eq!(drain.next().unwrap(), 'a');
85 ///
86 /// // This call keeps 'b' and 'c' in the vec.
87 /// drain.keep_rest();
88 ///
89 /// // If we wouldn't call `keep_rest()`,
90 /// // `vec` would be empty.
91 /// assert_eq!(vec, ['b', 'c']);
92 /// # Ok::<_, rune::alloc::Error>(())
93 /// ```
94 pub fn keep_rest(self) {
95 // At this moment layout looks like this:
96 //
97 // [head] [yielded by next] [unyielded] [yielded by next_back] [tail]
98 // ^-- start \_________/-- unyielded_len \____/-- self.tail_len
99 // ^-- unyielded_ptr ^-- tail
100 //
101 // Normally `Drop` impl would drop [unyielded] and then move [tail] to the `start`.
102 // Here we want to
103 // 1. Move [unyielded] to `start`
104 // 2. Move [tail] to a new start at `start + len(unyielded)`
105 // 3. Update length of the original vec to `len(head) + len(unyielded) + len(tail)`
106 // a. In case of ZST, this is the only thing we want to do
107 // 4. Do *not* drop self, as everything is put in a consistent state already, there is nothing to do
108 let mut this = ManuallyDrop::new(self);
109
110 unsafe {
111 let source_vec = this.vec.as_mut();
112
113 let start = source_vec.len();
114 let tail = this.tail_start;
115
116 let unyielded_len = this.iter.len();
117 let unyielded_ptr = this.iter.as_slice().as_ptr();
118
119 // ZSTs have no identity, so we don't need to move them around.
120 if !T::IS_ZST {
121 let start_ptr = source_vec.as_mut_ptr().add(start);
122
123 // memmove back unyielded elements
124 if unyielded_ptr != start_ptr {
125 let src = unyielded_ptr;
126 let dst = start_ptr;
127
128 ptr::copy(src, dst, unyielded_len);
129 }
130
131 // memmove back untouched tail
132 if tail != (start + unyielded_len) {
133 let src = source_vec.as_ptr().add(tail);
134 let dst = start_ptr.add(unyielded_len);
135 ptr::copy(src, dst, this.tail_len);
136 }
137 }
138
139 source_vec.set_len(start + unyielded_len + this.tail_len);
140 }
141 }
142}
143
144impl<T, A> AsRef<[T]> for Drain<'_, T, A>
145where
146 A: Allocator,
147{
148 fn as_ref(&self) -> &[T] {
149 self.as_slice()
150 }
151}
152
153unsafe impl<T: Sync, A: Sync + Allocator> Sync for Drain<'_, T, A> {}
154unsafe impl<T: Send, A: Send + Allocator> Send for Drain<'_, T, A> {}
155
156impl<T, A> Iterator for Drain<'_, T, A>
157where
158 A: Allocator,
159{
160 type Item = T;
161
162 #[inline]
163 fn next(&mut self) -> Option<T> {
164 self.iter
165 .next()
166 .map(|elt| unsafe { ptr::read(elt as *const _) })
167 }
168
169 fn size_hint(&self) -> (usize, Option<usize>) {
170 self.iter.size_hint()
171 }
172}
173
174impl<T, A> DoubleEndedIterator for Drain<'_, T, A>
175where
176 A: Allocator,
177{
178 #[inline]
179 fn next_back(&mut self) -> Option<T> {
180 self.iter
181 .next_back()
182 .map(|elt| unsafe { ptr::read(elt as *const _) })
183 }
184}
185
186impl<T, A> Drop for Drain<'_, T, A>
187where
188 A: Allocator,
189{
190 fn drop(&mut self) {
191 /// Moves back the un-`Drain`ed elements to restore the original `Vec`.
192 struct DropGuard<'r, 'a, T, A>(&'r mut Drain<'a, T, A>)
193 where
194 A: Allocator;
195
196 impl<T, A> Drop for DropGuard<'_, '_, T, A>
197 where
198 A: Allocator,
199 {
200 fn drop(&mut self) {
201 if self.0.tail_len > 0 {
202 unsafe {
203 let source_vec = self.0.vec.as_mut();
204 // memmove back untouched tail, update to new length
205 let start = source_vec.len();
206 let tail = self.0.tail_start;
207 if tail != start {
208 let src = source_vec.as_ptr().add(tail);
209 let dst = source_vec.as_mut_ptr().add(start);
210 ptr::copy(src, dst, self.0.tail_len);
211 }
212 source_vec.set_len(start + self.0.tail_len);
213 }
214 }
215 }
216 }
217
218 let iter = mem::take(&mut self.iter);
219 let drop_len = iter.len();
220
221 let mut vec = self.vec;
222
223 if T::IS_ZST {
224 // ZSTs have no identity, so we don't need to move them around, we only need to drop the correct amount.
225 // this can be achieved by manipulating the Vec length instead of moving values out from `iter`.
226 unsafe {
227 let vec = vec.as_mut();
228 let old_len = vec.len();
229 vec.set_len(old_len + drop_len + self.tail_len);
230 vec.truncate(old_len + self.tail_len);
231 }
232
233 return;
234 }
235
236 // ensure elements are moved back into their appropriate places, even when drop_in_place panics
237 let _guard = DropGuard(self);
238
239 if drop_len == 0 {
240 return;
241 }
242
243 // as_slice() must only be called when iter.len() is > 0 because
244 // it also gets touched by vec::Splice which may turn it into a dangling pointer
245 // which would make it and the vec pointer point to different allocations which would
246 // lead to invalid pointer arithmetic below.
247 let drop_ptr = iter.as_slice().as_ptr();
248
249 unsafe {
250 // drop_ptr comes from a slice::Iter which only gives us a &[T] but for drop_in_place
251 // a pointer with mutable provenance is necessary. Therefore we must reconstruct
252 // it from the original vec but also avoid creating a &mut to the front since that could
253 // invalidate raw pointers to it which some unsafe code might rely on.
254 let vec_ptr = vec.as_mut().as_mut_ptr();
255 let drop_offset = drop_ptr.offset_from_unsigned(vec_ptr);
256 let to_drop = ptr::slice_from_raw_parts_mut(vec_ptr.add(drop_offset), drop_len);
257 ptr::drop_in_place(to_drop);
258 }
259 }
260}
261
262impl<T, A> ExactSizeIterator for Drain<'_, T, A> where A: Allocator {}
263
264impl<T, A> FusedIterator for Drain<'_, T, A> where A: Allocator {}