crc32fast/
lib.rs

1//! Fast, SIMD-accelerated CRC32 (IEEE) checksum computation.
2//!
3//! ## Usage
4//!
5//! ### Simple usage
6//!
7//! For simple use-cases, you can call the [`hash()`] convenience function to
8//! directly compute the CRC32 checksum for a given byte slice:
9//!
10//! ```rust
11//! let checksum = crc32fast::hash(b"foo bar baz");
12//! ```
13//!
14//! ### Advanced usage
15//!
16//! For use-cases that require more flexibility or performance, for example when
17//! processing large amounts of data, you can create and manipulate a [`Hasher`]:
18//!
19//! ```rust
20//! use crc32fast::Hasher;
21//!
22//! let mut hasher = Hasher::new();
23//! hasher.update(b"foo bar baz");
24//! let checksum = hasher.finalize();
25//! ```
26//!
27//! ## Performance
28//!
29//! This crate contains multiple CRC32 implementations:
30//!
31//! - A fast baseline implementation which processes up to 16 bytes per iteration
32//! - An optimized implementation for modern `x86` using `sse` and `pclmulqdq` instructions
33//!
34//! Calling the [`Hasher::new`] constructor at runtime will perform a feature detection to select the most
35//! optimal implementation for the current CPU feature set.
36
37#![cfg_attr(not(feature = "std"), no_std)]
38
39#[deny(missing_docs)]
40#[cfg(test)]
41#[macro_use]
42extern crate quickcheck;
43
44#[macro_use]
45extern crate cfg_if;
46
47#[cfg(feature = "std")]
48use std as core;
49
50use core::fmt;
51use core::hash;
52
53mod baseline;
54mod combine;
55mod specialized;
56mod table;
57
58/// Computes the CRC32 hash of a byte slice.
59///
60/// Check out [`Hasher`] for more advanced use-cases.
61pub fn hash(buf: &[u8]) -> u32 {
62    let mut h = Hasher::new();
63    h.update(buf);
64    h.finalize()
65}
66
67#[derive(Clone)]
68enum State {
69    Baseline(baseline::State),
70    Specialized(specialized::State),
71}
72
73#[derive(Clone)]
74/// Represents an in-progress CRC32 computation.
75pub struct Hasher {
76    amount: u64,
77    state: State,
78}
79
80const DEFAULT_INIT_STATE: u32 = 0;
81
82impl Hasher {
83    /// Create a new `Hasher`.
84    ///
85    /// This will perform a CPU feature detection at runtime to select the most
86    /// optimal implementation for the current processor architecture.
87    pub fn new() -> Self {
88        Self::new_with_initial(DEFAULT_INIT_STATE)
89    }
90
91    /// Create a new `Hasher` with an initial CRC32 state.
92    ///
93    /// This works just like `Hasher::new`, except that it allows for an initial
94    /// CRC32 state to be passed in.
95    pub fn new_with_initial(init: u32) -> Self {
96        Self::new_with_initial_len(init, 0)
97    }
98
99    /// Create a new `Hasher` with an initial CRC32 state.
100    ///
101    /// As `new_with_initial`, but also accepts a length (in bytes). The
102    /// resulting object can then be used with `combine` to compute `crc(a ||
103    /// b)` from `crc(a)`, `crc(b)`, and `len(b)`.
104    pub fn new_with_initial_len(init: u32, amount: u64) -> Self {
105        Self::internal_new_specialized(init, amount)
106            .unwrap_or_else(|| Self::internal_new_baseline(init, amount))
107    }
108
109    #[doc(hidden)]
110    // Internal-only API. Don't use.
111    pub fn internal_new_baseline(init: u32, amount: u64) -> Self {
112        Hasher {
113            amount,
114            state: State::Baseline(baseline::State::new(init)),
115        }
116    }
117
118    #[doc(hidden)]
119    // Internal-only API. Don't use.
120    pub fn internal_new_specialized(init: u32, amount: u64) -> Option<Self> {
121        {
122            if let Some(state) = specialized::State::new(init) {
123                return Some(Hasher {
124                    amount,
125                    state: State::Specialized(state),
126                });
127            }
128        }
129        None
130    }
131
132    /// Process the given byte slice and update the hash state.
133    pub fn update(&mut self, buf: &[u8]) {
134        self.amount += buf.len() as u64;
135        match self.state {
136            State::Baseline(ref mut state) => state.update(buf),
137            State::Specialized(ref mut state) => state.update(buf),
138        }
139    }
140
141    /// Finalize the hash state and return the computed CRC32 value.
142    pub fn finalize(self) -> u32 {
143        match self.state {
144            State::Baseline(state) => state.finalize(),
145            State::Specialized(state) => state.finalize(),
146        }
147    }
148
149    /// Reset the hash state.
150    pub fn reset(&mut self) {
151        self.amount = 0;
152        match self.state {
153            State::Baseline(ref mut state) => state.reset(),
154            State::Specialized(ref mut state) => state.reset(),
155        }
156    }
157
158    /// Combine the hash state with the hash state for the subsequent block of bytes.
159    pub fn combine(&mut self, other: &Self) {
160        self.amount += other.amount;
161        let other_crc = other.clone().finalize();
162        match self.state {
163            State::Baseline(ref mut state) => state.combine(other_crc, other.amount),
164            State::Specialized(ref mut state) => state.combine(other_crc, other.amount),
165        }
166    }
167}
168
169impl fmt::Debug for Hasher {
170    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
171        f.debug_struct("crc32fast::Hasher").finish()
172    }
173}
174
175impl Default for Hasher {
176    fn default() -> Self {
177        Self::new()
178    }
179}
180
181impl hash::Hasher for Hasher {
182    fn write(&mut self, bytes: &[u8]) {
183        self.update(bytes)
184    }
185
186    fn finish(&self) -> u64 {
187        u64::from(self.clone().finalize())
188    }
189}
190
191#[cfg(test)]
192mod test {
193    use super::Hasher;
194
195    quickcheck! {
196        fn combine(bytes_1: Vec<u8>, bytes_2: Vec<u8>) -> bool {
197            let mut hash_a = Hasher::new();
198            hash_a.update(&bytes_1);
199            hash_a.update(&bytes_2);
200            let mut hash_b = Hasher::new();
201            hash_b.update(&bytes_2);
202            let mut hash_c = Hasher::new();
203            hash_c.update(&bytes_1);
204            hash_c.combine(&hash_b);
205
206            hash_a.finalize() == hash_c.finalize()
207        }
208
209        fn combine_from_len(bytes_1: Vec<u8>, bytes_2: Vec<u8>) -> bool {
210            let mut hash_a = Hasher::new();
211            hash_a.update(&bytes_1);
212            let a = hash_a.finalize();
213
214            let mut hash_b = Hasher::new();
215            hash_b.update(&bytes_2);
216            let b = hash_b.finalize();
217
218            let mut hash_ab = Hasher::new();
219            hash_ab.update(&bytes_1);
220            hash_ab.update(&bytes_2);
221            let ab = hash_ab.finalize();
222
223            let mut reconstructed = Hasher::new_with_initial_len(a, bytes_1.len() as u64);
224            let hash_b_reconstructed = Hasher::new_with_initial_len(b, bytes_2.len() as u64);
225
226            reconstructed.combine(&hash_b_reconstructed);
227
228            reconstructed.finalize() == ab
229        }
230    }
231}