num_order/
ord.rs

1use crate::NumOrd;
2use core::cmp::Ordering;
3use core::convert::TryFrom;
4#[cfg(feature = "num-rational")]
5use num_modular::udouble;
6
7// Case0: swap operand, this introduces overhead so only used for non-primitive types
8#[allow(unused_macros)]
9macro_rules! impl_ord_by_swap {
10    ($($t1:ty | $t2:ty;)*) => ($(
11        impl NumOrd<$t2> for $t1 {
12            #[inline]
13            fn num_partial_cmp(&self, other: &$t2) -> Option<Ordering> {
14                other.num_partial_cmp(self).map(Ordering::reverse)
15            }
16        }
17    )*);
18}
19
20// Case1: forward to builtin operator for same types
21macro_rules! impl_ord_equal_types {
22    ($($t:ty)*) => ($(
23        impl NumOrd<$t> for $t {
24            #[inline]
25            fn num_partial_cmp(&self, other: &$t) -> Option<Ordering> {
26                self.partial_cmp(&other)
27            }
28        }
29    )*);
30}
31
32impl_ord_equal_types! {
33    u8 u16 u32 u64 u128 usize
34    i8 i16 i32 i64 i128 isize
35    f32 f64
36}
37
38// Case2: forward to same types by safe casting
39macro_rules! impl_ord_by_casting {
40    ($($small:ty => $big:ty;)*) => ($(
41        impl NumOrd<$small> for $big {
42            #[inline]
43            fn num_partial_cmp(&self, other: &$small) -> Option<Ordering> {
44                self.partial_cmp(&<$big>::from(*other))
45            }
46        }
47        impl NumOrd<$big> for $small {
48            #[inline]
49            fn num_partial_cmp(&self, other: &$big) -> Option<Ordering> {
50                <$big>::from(*self).partial_cmp(other)
51            }
52        }
53    )*);
54}
55
56impl_ord_by_casting! {
57    // uN, uM for N < M
58    u8  => u128; u8  => u64; u8  => u32; u8 => u16;
59    u16 => u128; u16 => u64; u16 => u32;
60    u32 => u128; u32 => u64;
61    u64 => u128;
62
63    // iN, iM for N > M
64    i8  => i128; i8  => i64; i8  => i32; i8 => i16;
65    i16 => i128; i16 => i64; i16 => i32;
66    i32 => i128; i32 => i64;
67    i64 => i128;
68
69    // iN, uM for N > M
70    u8  => i128; u8  => i64; u8  => i32; u8 => i16;
71    u16 => i128; u16 => i64; u16 => i32;
72    u32 => i128; u32 => i64;
73    u64 => i128;
74
75    // fN, fM for N > M
76    f32 => f64;
77
78    // f32, uM for 24 >= M, since f32 can exactly represent all integers (-2^24,2^24)
79    // f64, uM for 53 >= M, since f64 can exactly represent all integers (-2^53,2^53)
80    u8 => f32; u16 => f32;
81    u8 => f64; u16 => f64; u32 => f64;
82
83    // f32, iM for 24 >= M
84    // f64, iM for 53 >= M
85    // since iM's range [-2^(M-1),2^(M-1)) includes -2^(M-1), bounds do not change
86    i8 => f32; i16 => f32;
87    i8 => f64; i16 => f64; i32 => f64;
88}
89
90// Case3: trivial logic for comparing signed and unsigned integers
91macro_rules! impl_ord_between_diff_sign {
92    ($($signed:ty => $unsigned:ty;)*) => ($(
93        impl NumOrd<$signed> for $unsigned {
94            #[inline]
95            fn num_partial_cmp(&self, other: &$signed) -> Option<Ordering> {
96                if other < &0 {
97                    Some(Ordering::Greater)
98                } else {
99                    self.partial_cmp(&<$unsigned>::try_from(*other).unwrap())
100                }
101            }
102        }
103        impl NumOrd<$unsigned> for $signed {
104            #[inline]
105            fn num_partial_cmp(&self, other: &$unsigned) -> Option<Ordering> {
106                if self < &0 {
107                    Some(Ordering::Less)
108                } else {
109                    <$unsigned>::try_from(*self).unwrap().partial_cmp(other)
110                }
111            }
112        }
113    )*);
114}
115
116impl_ord_between_diff_sign! {
117    i8   => u128; i8  => u64; i8  => u32 ; i8  => u16; i8 => u8;
118    i16  => u128; i16 => u64; i16 => u32 ; i16 => u16;
119    i32  => u128; i32 => u64; i32 => u32 ;
120    i64  => u128; i64 => u64;
121    i128 => u128; isize => usize;
122}
123
124// Case4: special handling for comparing float and integer types
125// Note: if `a` is an integer, `a cmp b` equals to `(a, trunc(b)) cmp (trunc(b), b)` (lexicographically)
126
127trait FloatExp {
128    /// Get the exponent of a float number
129    fn e(self) -> i16;
130}
131impl FloatExp for f32 {
132    #[inline]
133    fn e(self) -> i16 {
134        (self.to_bits() >> 23 & 0xff) as i16 - (0x7f + 23)
135    }
136}
137impl FloatExp for f64 {
138    #[inline]
139    fn e(self) -> i16 {
140        (self.to_bits() >> 52 & 0x7ff) as i16 - (0x3ff + 52)
141    }
142}
143
144macro_rules! impl_ord_between_int_float {
145    ($($float:ty | $int:ty;)*) => ($(
146        impl NumOrd<$float> for $int {
147            #[inline]
148            fn num_partial_cmp(&self, other: &$float) -> Option<Ordering> {
149                if other.is_nan() {
150                    None
151                } else if other < &(<$int>::MIN as $float) { // integer min is on binary boundary
152                    Some(Ordering::Greater)
153                } else if other >= &(<$int>::MAX as $float) { // integer max is not on binary boundary
154                    Some(Ordering::Less)
155                } else if other.e() >= 0 { // the float has no fractional part
156                    self.partial_cmp(&(*other as $int))
157                } else {
158                    let trunc = *other as $int;
159                    (*self, trunc as $float).partial_cmp(&(trunc, *other))
160                }
161            }
162        }
163        impl NumOrd<$int> for $float {
164            #[inline]
165            fn num_partial_cmp(&self, other: &$int) -> Option<Ordering> {
166                if self.is_nan() {
167                    None
168                } else if self < &(<$int>::MIN as $float) { // integer min is on binary boundary
169                    Some(Ordering::Less)
170                } else if self >= &(<$int>::MAX as $float) { // integer max is not on binary boundary
171                    Some(Ordering::Greater)
172                } else if self.e() >= 0 { // the float has no fractional part
173                    (*self as $int).partial_cmp(other)
174                } else {
175                    let trunc = *other as $int;
176                    (trunc, *self).partial_cmp(&(*other, trunc as $float))
177                }
178            }
179        }
180    )*);
181}
182
183impl_ord_between_int_float! {
184    f32|u128; f32|i128; f32|u64; f32|i64; f32|u32; f32|i32;
185    f64|u128; f64|i128; f64|u64; f64|i64;
186}
187
188// Case5: forward size integers to corresponding concrete types
189macro_rules! impl_ord_with_size_types {
190    ($($t:ty)*) => ($(
191        impl NumOrd<$t> for usize {
192            #[inline]
193            fn num_partial_cmp(&self, other: &$t) -> Option<Ordering> {
194                #[cfg(target_pointer_width = "32")]
195                { (*self as u32).num_partial_cmp(other) }
196                #[cfg(target_pointer_width = "64")]
197                { (*self as u64).num_partial_cmp(other) }
198            }
199        }
200        impl NumOrd<usize> for $t {
201            #[inline]
202            fn num_partial_cmp(&self, other: &usize) -> Option<Ordering> {
203                #[cfg(target_pointer_width = "32")]
204                { self.num_partial_cmp(&(*other as u32)) }
205                #[cfg(target_pointer_width = "64")]
206                { self.num_partial_cmp(&(*other as u64)) }
207            }
208        }
209        impl NumOrd<$t> for isize {
210            #[inline]
211            fn num_partial_cmp(&self, other: &$t) -> Option<Ordering> {
212                #[cfg(target_pointer_width = "32")]
213                { (*self as i32).num_partial_cmp(other) }
214                #[cfg(target_pointer_width = "64")]
215                { (*self as i64).num_partial_cmp(other) }
216            }
217        }
218        impl NumOrd<isize> for $t {
219            #[inline]
220            fn num_partial_cmp(&self, other: &isize) -> Option<Ordering> {
221                #[cfg(target_pointer_width = "32")]
222                { self.num_partial_cmp(&(*other as i32)) }
223                #[cfg(target_pointer_width = "64")]
224                { self.num_partial_cmp(&(*other as i64)) }
225            }
226        }
227    )*);
228}
229
230impl_ord_with_size_types!(u8 u16 u32 u64 u128 i8 i16 i32 i64 i128 f32 f64);
231
232// Case6: separate handling for special types
233#[cfg(feature = "num-bigint")]
234mod _num_bigint {
235    use super::*;
236    use num_bigint::{BigInt, BigUint};
237    use num_traits::{FromPrimitive, Signed};
238
239    impl_ord_equal_types!(BigInt BigUint);
240    impl_ord_by_casting! {
241        u8 => BigUint; u16 => BigUint; u32 => BigUint; u64 => BigUint; u128 => BigUint;
242        i8 => BigInt; i16 => BigInt; i32 => BigInt; i64 => BigInt; i128 => BigInt;
243        u8 => BigInt; u16 => BigInt; u32 => BigInt; u64 => BigInt; u128 => BigInt;
244    }
245    impl_ord_between_diff_sign! {
246        i8 => BigUint; i16 => BigUint; i32 => BigUint; i64 => BigUint; i128 => BigUint;
247    }
248    impl_ord_with_size_types! (BigInt BigUint);
249
250    // specialized implementations
251    impl NumOrd<f32> for BigUint {
252        #[inline]
253        fn num_partial_cmp(&self, other: &f32) -> Option<Ordering> {
254            if other.is_nan() {
255                None
256            } else if other < &0. {
257                Some(Ordering::Greater)
258            } else if other.is_infinite() && other.is_sign_positive() {
259                Some(Ordering::Less)
260            } else {
261                let trunc = other.trunc();
262                (self, &trunc).partial_cmp(&(&BigUint::from_f32(trunc).unwrap(), other))
263            }
264        }
265    }
266    impl NumOrd<f64> for BigUint {
267        #[inline]
268        fn num_partial_cmp(&self, other: &f64) -> Option<Ordering> {
269            if other.is_nan() {
270                None
271            } else if other < &0. {
272                Some(Ordering::Greater)
273            } else if other.is_infinite() && other.is_sign_positive() {
274                Some(Ordering::Less)
275            } else {
276                let trunc = other.trunc();
277                (self, &trunc).partial_cmp(&(&BigUint::from_f64(trunc).unwrap(), other))
278            }
279        }
280    }
281    impl NumOrd<f32> for BigInt {
282        #[inline]
283        fn num_partial_cmp(&self, other: &f32) -> Option<Ordering> {
284            if other.is_nan() {
285                None
286            } else if other.is_infinite() {
287                if other.is_sign_positive() {
288                    Some(Ordering::Less)
289                } else {
290                    Some(Ordering::Greater)
291                }
292            } else {
293                let trunc = other.trunc();
294                (self, &trunc).partial_cmp(&(&BigInt::from_f32(trunc).unwrap(), other))
295            }
296        }
297    }
298    impl NumOrd<f64> for BigInt {
299        #[inline]
300        fn num_partial_cmp(&self, other: &f64) -> Option<Ordering> {
301            if other.is_nan() {
302                None
303            } else if other.is_infinite() {
304                if other.is_sign_positive() {
305                    Some(Ordering::Less)
306                } else {
307                    Some(Ordering::Greater)
308                }
309            } else {
310                let trunc = other.trunc();
311                (self, &trunc).partial_cmp(&(&BigInt::from_f64(trunc).unwrap(), other))
312            }
313        }
314    }
315    impl NumOrd<BigInt> for BigUint {
316        #[inline]
317        fn num_partial_cmp(&self, other: &BigInt) -> Option<Ordering> {
318            if other.is_negative() {
319                Some(Ordering::Greater)
320            } else {
321                self.partial_cmp(other.magnitude())
322            }
323        }
324    }
325    impl_ord_by_swap! { f32|BigInt; f32|BigUint; f64|BigInt; f64|BigUint; BigInt|BigUint; }
326}
327
328// FIXME: Implementations for templated numeric types are directly specialized, because there is no
329// negative impl or specialization support yet in rust. We could have a generalized way to implement
330// the comparsion if the specialization is supported.
331
332#[cfg(feature = "num-rational")]
333mod _num_rational {
334    use super::*;
335    use num_rational::Ratio;
336    use num_traits::{float::FloatCore, CheckedMul, Signed, Zero};
337
338    impl_ord_equal_types!(
339        Ratio<i8> Ratio<i16> Ratio<i32> Ratio<i64> Ratio<i128> Ratio<isize>
340        Ratio<u8> Ratio<u16> Ratio<u32> Ratio<u64> Ratio<u128> Ratio<usize>
341    );
342
343    macro_rules! impl_ratio_ord_with_int {
344        ($($t:ty)*) => ($(
345            impl NumOrd<Ratio<$t>> for $t {
346                #[inline]
347                fn num_partial_cmp(&self, other: &Ratio<$t>) -> Option<Ordering> {
348                    (self * other.denom()).partial_cmp(other.numer())
349                }
350            }
351            impl NumOrd<$t> for Ratio<$t> {
352                #[inline]
353                fn num_partial_cmp(&self, other: &$t) -> Option<Ordering> {
354                    self.numer().partial_cmp(&(other * self.denom()))
355                }
356            }
357        )*);
358    }
359    impl_ratio_ord_with_int!(i8 i16 i32 i64 i128 isize u8 u16 u32 u64 u128 usize);
360
361    macro_rules! impl_ratio_ord_by_casting {
362        ($($small:ty => $big:ty;)*) => ($(
363            // between ratios
364            impl NumOrd<Ratio<$small>> for Ratio<$big> {
365                #[inline]
366                fn num_partial_cmp(&self, other: &Ratio<$small>) -> Option<Ordering> {
367                    let r = Ratio::new(<$big>::from(*other.numer()), <$big>::from(*other.denom()));
368                    self.partial_cmp(&r)
369                }
370            }
371            impl NumOrd<Ratio<$big>> for Ratio<$small> {
372                #[inline]
373                fn num_partial_cmp(&self, other: &Ratio<$big>) -> Option<Ordering> {
374                    let r = Ratio::new(<$big>::from(*self.numer()), <$big>::from(*self.denom()));
375                    r.partial_cmp(other)
376                }
377            }
378
379            // between ratio and ints
380            impl NumOrd<$small> for Ratio<$big> {
381                #[inline]
382                fn num_partial_cmp(&self, other: &$small) -> Option<Ordering> {
383                    if let Some(prod) = self.denom().checked_mul(&<$big>::from(*other)) {
384                        self.numer().partial_cmp(&prod)
385                    } else {
386                        Some(Ordering::Less)
387                    }
388                }
389            }
390            impl NumOrd<Ratio<$big>> for $small {
391                #[inline]
392                fn num_partial_cmp(&self, other: &Ratio<$big>) -> Option<Ordering> {
393                    if let Some(prod) = other.denom().checked_mul(&<$big>::from(*self)) {
394                        prod.partial_cmp(other.numer())
395                    } else {
396                        Some(Ordering::Greater)
397                    }
398                }
399            }
400            impl NumOrd<$big> for Ratio<$small> {
401                #[inline]
402                fn num_partial_cmp(&self, other: &$big) -> Option<Ordering> {
403                    if let Some(prod) = other.checked_mul(&<$big>::from(*self.denom())) {
404                        <$big>::from(*self.numer()).partial_cmp(&prod)
405                    } else {
406                        Some(Ordering::Less)
407                    }
408                }
409            }
410            impl NumOrd<Ratio<$small>> for $big {
411                #[inline]
412                fn num_partial_cmp(&self, other: &Ratio<$small>) -> Option<Ordering> {
413                    if let Some(prod) = self.checked_mul(&<$big>::from(*other.denom())) {
414                        prod.partial_cmp(&<$big>::from(*other.numer()))
415                    } else {
416                        Some(Ordering::Greater)
417                    }
418                }
419            }
420        )*);
421    }
422    impl_ratio_ord_by_casting! {
423        // uN, uM for N < M
424        u8  => u128; u8  => u64; u8  => u32; u8 => u16;
425        u16 => u128; u16 => u64; u16 => u32;
426        u32 => u128; u32 => u64;
427        u64 => u128;
428
429        // iN, iM for N > M
430        i8  => i128; i8  => i64; i8  => i32; i8 => i16;
431        i16 => i128; i16 => i64; i16 => i32;
432        i32 => i128; i32 => i64;
433        i64 => i128;
434
435        // iN, uM for N > M
436        u8  => i128; u8  => i64; u8  => i32; u8 => i16;
437        u16 => i128; u16 => i64; u16 => i32;
438        u32 => i128; u32 => i64;
439        u64 => i128;
440    }
441
442    // cast unsigned integers for comparison
443    macro_rules! impl_ratio_ord_between_diff_sign {
444        ($($int:ty => $uint:ty;)*) => ($(
445            // between ratios
446            impl NumOrd<Ratio<$uint>> for Ratio<$int> {
447                #[inline]
448                fn num_partial_cmp(&self, other: &Ratio<$uint>) -> Option<Ordering> {
449                    if self.is_negative() {
450                        Some(Ordering::Less)
451                    } else {
452                        let r = Ratio::<$uint>::new(<$uint>::try_from(*self.numer()).unwrap(), <$uint>::try_from(*self.denom()).unwrap());
453                        r.partial_cmp(other)
454                    }
455                }
456            }
457            impl NumOrd<Ratio<$int>> for Ratio<$uint> {
458                #[inline]
459                fn num_partial_cmp(&self, other: &Ratio<$int>) -> Option<Ordering> {
460                    if other.is_negative() {
461                        Some(Ordering::Greater)
462                    } else {
463                        let r = Ratio::<$uint>::new(<$uint>::try_from(*other.numer()).unwrap(), <$uint>::try_from(*other.denom()).unwrap());
464                        self.partial_cmp(&r)
465                    }
466                }
467            }
468
469            // between ratio and integers
470            impl NumOrd<$uint> for Ratio<$int> {
471                #[inline]
472                fn num_partial_cmp(&self, other: &$uint) -> Option<Ordering> {
473                    if self.is_negative() {
474                        Some(Ordering::Less)
475                    } else {
476                        <$uint>::try_from(*self.numer()).unwrap().partial_cmp(&(<$uint>::try_from(*self.denom()).unwrap() * other))
477                    }
478                }
479            }
480            impl NumOrd<Ratio<$int>> for $uint {
481                #[inline]
482                fn num_partial_cmp(&self, other: &Ratio<$int>) -> Option<Ordering> {
483                    if other.is_negative() {
484                        Some(Ordering::Greater)
485                    } else {
486                        (<$uint>::try_from(*other.denom()).unwrap() * self).partial_cmp(&<$uint>::try_from(*other.numer()).unwrap())
487                    }
488                }
489            }
490            impl NumOrd<$int> for Ratio<$uint> {
491                #[inline]
492                fn num_partial_cmp(&self, other: &$int) -> Option<Ordering> {
493                    if other.is_negative() {
494                        Some(Ordering::Greater)
495                    } else {
496                        self.numer().partial_cmp(&(<$uint>::try_from(*other).unwrap() * self.denom()))
497                    }
498                }
499            }
500            impl NumOrd<Ratio<$uint>> for $int {
501                #[inline]
502                fn num_partial_cmp(&self, other: &Ratio<$uint>) -> Option<Ordering> {
503                    if self.is_negative() {
504                        Some(Ordering::Less)
505                    } else {
506                        (<$uint>::try_from(*self).unwrap() * other.denom()).partial_cmp(other.numer())
507                    }
508                }
509            }
510        )*);
511    }
512    impl_ratio_ord_between_diff_sign! {
513        i8  => u128; i8  => u64; i8  => u32; i8  => u16; i8 => u8;
514        i16 => u128; i16 => u64; i16 => u32; i16 => u16;
515        i32 => u128; i32 => u64; i32 => u32;
516        i64 => u128; i64 => u64;
517        i128 => u128; isize => usize;
518    }
519
520    macro_rules! float_cmp_shortcuts {
521        ($ratio:tt, $float:tt) => {
522            // shortcut for comparing zeros
523            if $ratio.is_zero() {
524                return 0f64.partial_cmp($float);
525            }
526            if $float.is_zero() {
527                return $ratio.numer().partial_cmp(&0);
528            }
529
530            // shortcut for nan and inf
531            if $float.is_nan() {
532                return None;
533            } else if $float.is_infinite() {
534                if $float.is_sign_positive() {
535                    return Some(Ordering::Less);
536                } else {
537                    // negative
538                    return Some(Ordering::Greater);
539                }
540            }
541        };
542    }
543
544    // special handling for f64 against u64/i64 and u128/i128
545    impl NumOrd<f64> for Ratio<u64> {
546        fn num_partial_cmp(&self, other: &f64) -> Option<Ordering> {
547            float_cmp_shortcuts!(self, other);
548
549            // other = sign * man * 2^exp
550            let (man, exp, sign) = other.integer_decode();
551            if sign < 0 {
552                return Some(Ordering::Greater);
553            }
554
555            // self = a / b
556            let a = *self.numer();
557            let b = *self.denom();
558
559            let result = if exp >= 0 {
560                // r / f = a / (man * 2^exp * b) if exp >= 0
561                if let Some(den) = || -> Option<_> {
562                    1u64.checked_shl(exp as u32)?
563                        .checked_mul(man)?
564                        .checked_mul(b)
565                }() {
566                    a.partial_cmp(&den).unwrap()
567                } else {
568                    Ordering::Less
569                }
570            } else {
571                // r / f = (a * 2^(-exp)) / (man * b) if exp < 0
572                let den = man as u128 * b as u128;
573                if let Some(num) =
574                    || -> Option<_> { 1u128.checked_shl((-exp) as u32)?.checked_mul(a as u128) }()
575                {
576                    num.partial_cmp(&den).unwrap()
577                } else {
578                    Ordering::Greater
579                }
580            };
581            Some(result)
582        }
583    }
584    impl NumOrd<f64> for Ratio<i64> {
585        fn num_partial_cmp(&self, other: &f64) -> Option<Ordering> {
586            float_cmp_shortcuts!(self, other);
587
588            // other = sign * man * 2^exp
589            let (man, exp, sign) = other.integer_decode();
590            let reverse = match (!self.is_negative(), sign >= 0) {
591                (true, false) => return Some(Ordering::Greater),
592                (false, true) => return Some(Ordering::Less),
593                (true, true) => false,
594                (false, false) => true,
595            };
596
597            // self = a / b, using safe absolute operation
598            let a = if self.numer() < &0 {
599                (*self.numer() as u64).wrapping_neg()
600            } else {
601                *self.numer() as u64
602            };
603            let b = if self.denom() < &0 {
604                (*self.denom() as u64).wrapping_neg()
605            } else {
606                *self.denom() as u64
607            };
608
609            let result = if exp >= 0 {
610                // r / f = a / (man * 2^exp * b) if exp >= 0
611                if let Some(den) = || -> Option<_> {
612                    1u64.checked_shl(exp as u32)?
613                        .checked_mul(man)?
614                        .checked_mul(b)
615                }() {
616                    a.partial_cmp(&den).unwrap()
617                } else {
618                    Ordering::Less
619                }
620            } else {
621                // r / f = (a * 2^(-exp)) / (man * b) if exp < 0
622                let den = man as u128 * b as u128;
623                if let Some(num) =
624                    || -> Option<_> { 1u128.checked_shl((-exp) as u32)?.checked_mul(a as u128) }()
625                {
626                    num.partial_cmp(&den).unwrap()
627                } else {
628                    Ordering::Greater
629                }
630            };
631
632            if reverse {
633                Some(result.reverse())
634            } else {
635                Some(result)
636            }
637        }
638    }
639    impl NumOrd<f64> for Ratio<u128> {
640        fn num_partial_cmp(&self, other: &f64) -> Option<Ordering> {
641            float_cmp_shortcuts!(self, other);
642
643            // other = sign * man * 2^exp
644            let (man, exp, sign) = other.integer_decode();
645            if sign < 0 {
646                return Some(Ordering::Greater);
647            }
648
649            // self = a / b
650            let a = *self.numer();
651            let b = *self.denom();
652
653            let result = if exp >= 0 {
654                // r / f = a / (man * 2^exp * b) if exp >= 0
655                if let Some(num) = || -> Option<_> {
656                    1u128
657                        .checked_shl(exp as u32)?
658                        .checked_mul(man as u128)?
659                        .checked_mul(b)
660                }() {
661                    a.partial_cmp(&num).unwrap()
662                } else {
663                    Ordering::Less
664                }
665            } else {
666                // r / f = (a * 2^(-exp)) / (man * b) if exp < 0
667                let den = udouble::widening_mul(man as u128, b);
668                if let Some(num) = || -> Option<_> {
669                    let (v, o) = udouble { lo: 1, hi: 0 }
670                        .checked_shl((-exp) as u32)?
671                        .overflowing_mul1(a);
672                    if !o {
673                        Some(v)
674                    } else {
675                        None
676                    }
677                }() {
678                    num.partial_cmp(&den).unwrap()
679                } else {
680                    Ordering::Greater
681                }
682            };
683            Some(result)
684        }
685    }
686    impl NumOrd<f64> for Ratio<i128> {
687        fn num_partial_cmp(&self, other: &f64) -> Option<Ordering> {
688            float_cmp_shortcuts!(self, other);
689
690            // other = sign * man * 2^exp
691            let (man, exp, sign) = other.integer_decode();
692            let reverse = match (!self.is_negative(), sign >= 0) {
693                (true, false) => return Some(Ordering::Greater),
694                (false, true) => return Some(Ordering::Less),
695                (true, true) => false,
696                (false, false) => true,
697            };
698
699            // self = a / b, using safe absolute operation
700            let a = if self.numer() < &0 {
701                (*self.numer() as u128).wrapping_neg()
702            } else {
703                *self.numer() as u128
704            };
705            let b = if self.denom() < &0 {
706                (*self.denom() as u128).wrapping_neg()
707            } else {
708                *self.denom() as u128
709            };
710
711            let result = if exp >= 0 {
712                // r / f = a / (man * 2^exp * b) if exp >= 0
713                if let Some(num) = || -> Option<_> {
714                    1u128
715                        .checked_shl(exp as u32)?
716                        .checked_mul(man as u128)?
717                        .checked_mul(b)
718                }() {
719                    a.partial_cmp(&num).unwrap()
720                } else {
721                    Ordering::Less
722                }
723            } else {
724                // r / f = (a * 2^(-exp)) / (man * b) if exp < 0
725                let den = udouble::widening_mul(man as u128, b);
726                if let Some(num) = || -> Option<_> {
727                    let (v, o) = udouble { lo: 1, hi: 0 }
728                        .checked_shl((-exp) as u32)?
729                        .overflowing_mul1(a);
730                    if !o {
731                        Some(v)
732                    } else {
733                        None
734                    }
735                }() {
736                    num.partial_cmp(&den).unwrap()
737                } else {
738                    Ordering::Greater
739                }
740            };
741
742            if reverse {
743                Some(result.reverse())
744            } else {
745                Some(result)
746            }
747        }
748    }
749    impl_ord_by_swap!(f64|Ratio<i64>; f64|Ratio<u64>; f64|Ratio<i128>; f64|Ratio<u128>;);
750
751    // cast to f64 and i64 for comparison
752    macro_rules! impl_ratio_ord_with_floats_by_casting {
753        ($($float:ty => $bfloat:ty | $int:ty => $bint:ty;)*) => ($(
754            impl NumOrd<$float> for Ratio<$int> {
755                #[inline]
756                fn num_partial_cmp(&self, other: &$float) -> Option<Ordering> {
757                    let bratio = Ratio::<$bint>::new(*self.numer() as $bint, *self.denom() as $bint);
758                    bratio.num_partial_cmp(&(*other as $bfloat))
759                }
760            }
761            impl NumOrd<Ratio<$int>> for $float {
762                #[inline]
763                fn num_partial_cmp(&self, other: &Ratio<$int>) -> Option<Ordering> {
764                    let bratio = Ratio::<$bint>::new(*other.numer() as $bint, *other.denom() as $bint);
765                    (*self as $bfloat).num_partial_cmp(&bratio)
766                }
767            }
768        )*);
769    }
770    impl_ratio_ord_with_floats_by_casting! {
771        f32 => f64|i8 => i64; f32 => f64|i16 => i64; f32 => f64|i32 => i64; f32 => f64|i64 => i64;
772        f64 => f64|i8 => i64; f64 => f64|i16 => i64; f64 => f64|i32 => i64;
773        f32 => f64|u8 => u64; f32 => f64|u16 => u64; f32 => f64|u32 => u64; f32 => f64|u64 => u64;
774        f64 => f64|u8 => u64; f64 => f64|u16 => u64; f64 => f64|u32 => u64;
775        f32 => f64|u128 => u128; f32 => f64|i128 => i128;
776    }
777
778    // deal with size types
779    macro_rules! impl_ratio_with_size_types_ord {
780        ($($t:ty)*) => ($(
781            impl NumOrd<$t> for Ratio<isize> {
782                #[inline]
783                fn num_partial_cmp(&self, other: &$t) -> Option<Ordering> {
784                    #[cfg(target_pointer_width = "32")]
785                    let r = Ratio::<i32>::new(*self.numer() as i32, *self.denom() as i32);
786                    #[cfg(target_pointer_width = "64")]
787                    let r = Ratio::<i64>::new(*self.numer() as i64, *self.denom() as i64);
788
789                    r.num_partial_cmp(other)
790                }
791            }
792            impl NumOrd<$t> for Ratio<usize> {
793                #[inline]
794                fn num_partial_cmp(&self, other: &$t) -> Option<Ordering> {
795                    #[cfg(target_pointer_width = "32")]
796                    let r = Ratio::<u32>::new(*self.numer() as u32, *self.denom() as u32);
797                    #[cfg(target_pointer_width = "64")]
798                    let r = Ratio::<u64>::new(*self.numer() as u64, *self.denom() as u64);
799
800                    r.num_partial_cmp(other)
801                }
802            }
803            impl_ord_by_swap!($t|Ratio<isize>; $t|Ratio<usize>;);
804        )*);
805    }
806    impl_ratio_with_size_types_ord!(i8 i16 i32 i64 i128 u8 u16 u32 u64 u128 f32 f64);
807
808    macro_rules! impl_ratio_ord_with_size_types {
809        ($($t:ty)*) => ($(
810            impl NumOrd<Ratio<$t>> for isize {
811                #[inline]
812                fn num_partial_cmp(&self, other: &Ratio<$t>) -> Option<Ordering> {
813                    #[cfg(target_pointer_width = "32")]
814                    return (*self as i32).num_partial_cmp(other);
815                    #[cfg(target_pointer_width = "64")]
816                    return (*self as i64).num_partial_cmp(other);
817                }
818            }
819            impl NumOrd<Ratio<$t>> for usize {
820                #[inline]
821                fn num_partial_cmp(&self, other: &Ratio<$t>) -> Option<Ordering> {
822                    #[cfg(target_pointer_width = "32")]
823                    return (*self as u32).num_partial_cmp(other);
824                    #[cfg(target_pointer_width = "64")]
825                    return (*self as u64).num_partial_cmp(other);
826                }
827            }
828            impl NumOrd<Ratio<$t>> for Ratio<isize> {
829                #[inline]
830                fn num_partial_cmp(&self, other: &Ratio<$t>) -> Option<Ordering> {
831                    #[cfg(target_pointer_width = "32")]
832                    let r = Ratio::<i32>::new(*self.numer() as i32, *self.denom() as i32);
833                    #[cfg(target_pointer_width = "64")]
834                    let r = Ratio::<i64>::new(*self.numer() as i64, *self.denom() as i64);
835
836                    r.num_partial_cmp(other)
837                }
838            }
839            impl NumOrd<Ratio<$t>> for Ratio<usize> {
840                #[inline]
841                fn num_partial_cmp(&self, other: &Ratio<$t>) -> Option<Ordering> {
842                    #[cfg(target_pointer_width = "32")]
843                    let r = Ratio::<u32>::new(*self.numer() as u32, *self.denom() as u32);
844                    #[cfg(target_pointer_width = "64")]
845                    let r = Ratio::<u64>::new(*self.numer() as u64, *self.denom() as u64);
846
847                    r.num_partial_cmp(other)
848                }
849            }
850            impl_ord_by_swap!(Ratio<$t>|isize; Ratio<$t>|usize; Ratio<$t>|Ratio<isize>; Ratio<$t>|Ratio<usize>;);
851        )*);
852    }
853    impl_ratio_ord_with_size_types!(i8 i16 i32 i64 i128 u8 u16 u32 u64 u128);
854
855    #[cfg(feature = "num-bigint")]
856    mod _num_bigint {
857        use super::*;
858        use num_bigint::{BigInt, BigUint};
859        use num_traits::One;
860
861        impl_ord_equal_types!(Ratio<BigInt> Ratio<BigUint>);
862        impl_ratio_ord_by_casting! {
863            u8 => BigUint; u16 => BigUint; u32 => BigUint; u64 => BigUint; u128 => BigUint;
864            i8 => BigInt; i16 => BigInt; i32 => BigInt; i64 => BigInt; i128 => BigInt;
865            u8 => BigInt; u16 => BigInt; u32 => BigInt; u64 => BigInt; u128 => BigInt;
866        }
867        impl_ratio_ord_between_diff_sign! {
868            i8 => BigUint; i16 => BigUint; i32 => BigUint; i64 => BigUint; i128 => BigUint;
869        }
870        impl_ratio_ord_with_int!(BigInt BigUint);
871        impl_ratio_with_size_types_ord!(BigInt BigUint);
872        impl_ratio_ord_with_size_types!(BigInt BigUint);
873
874        // specialized implementations
875        impl NumOrd<f64> for Ratio<BigUint> {
876            #[inline]
877            fn num_partial_cmp(&self, other: &f64) -> Option<Ordering> {
878                // shortcut for comparing zeros
879                if self.is_zero() {
880                    return 0f64.partial_cmp(other);
881                }
882                if other.is_zero() {
883                    return self.numer().partial_cmp(&BigUint::zero());
884                }
885
886                // shortcut for nan and inf
887                if other.is_nan() {
888                    return None;
889                } else if other.is_infinite() {
890                    if other.is_sign_positive() {
891                        return Some(Ordering::Less);
892                    } else {
893                        // negative
894                        return Some(Ordering::Greater);
895                    }
896                }
897
898                // other = sign * man * 2^exp
899                let (man, exp, sign) = other.integer_decode();
900                if sign < 0 {
901                    return Some(Ordering::Greater);
902                }
903
904                // self = a / b
905                let a = self.numer();
906                let b = self.denom();
907
908                let result = if exp >= 0 {
909                    // r / f = a / (man * 2^exp * b) if exp >= 0
910                    a.partial_cmp(&((BigUint::one() << exp as u32) * man))
911                        .unwrap()
912                } else {
913                    // r / f = (a * 2^(-exp)) / (man * b) if exp < 0
914                    let den = BigUint::from(man) * b;
915                    let num = (BigUint::one() << ((-exp) as u32)) * a;
916                    num.partial_cmp(&den).unwrap()
917                };
918
919                Some(result)
920            }
921        }
922        impl NumOrd<f64> for Ratio<BigInt> {
923            #[inline]
924            fn num_partial_cmp(&self, other: &f64) -> Option<Ordering> {
925                // shortcut for comparing zeros
926                if self.is_zero() {
927                    return 0f64.partial_cmp(other);
928                }
929                if other.is_zero() {
930                    return self.numer().partial_cmp(&BigInt::zero());
931                }
932
933                // shortcut for nan and inf
934                if other.is_nan() {
935                    return None;
936                } else if other.is_infinite() {
937                    if other.is_sign_positive() {
938                        return Some(Ordering::Less);
939                    } else {
940                        // negative
941                        return Some(Ordering::Greater);
942                    }
943                }
944
945                // other = sign * man * 2^exp
946                let (man, exp, sign) = other.integer_decode();
947                let reverse = match (!self.is_negative(), sign >= 0) {
948                    (true, false) => return Some(Ordering::Greater),
949                    (false, true) => return Some(Ordering::Less),
950                    (true, true) => false,
951                    (false, false) => true,
952                };
953
954                // self = a / b, using safe absolute operation
955                let a = self.numer().magnitude();
956                let b = self.denom().magnitude();
957
958                let result = if exp >= 0 {
959                    // r / f = a / (man * 2^exp * b) if exp >= 0
960                    a.partial_cmp(&((BigUint::one() << exp as u32) * man))
961                        .unwrap()
962                } else {
963                    // r / f = (a * 2^(-exp)) / (man * b) if exp < 0
964                    let den = BigUint::from(man) * b;
965                    let num = (BigUint::one() << ((-exp) as u32)) * a;
966                    num.partial_cmp(&den).unwrap()
967                };
968
969                if reverse {
970                    Some(result.reverse())
971                } else {
972                    Some(result)
973                }
974            }
975        }
976        impl NumOrd<f32> for Ratio<BigUint> {
977            #[inline]
978            fn num_partial_cmp(&self, other: &f32) -> Option<Ordering> {
979                self.num_partial_cmp(&(*other as f64))
980            }
981        }
982        impl NumOrd<f32> for Ratio<BigInt> {
983            #[inline]
984            fn num_partial_cmp(&self, other: &f32) -> Option<Ordering> {
985                self.num_partial_cmp(&(*other as f64))
986            }
987        }
988        impl NumOrd<Ratio<BigInt>> for Ratio<BigUint> {
989            #[inline]
990            fn num_partial_cmp(&self, other: &Ratio<BigInt>) -> Option<Ordering> {
991                if other.is_negative() {
992                    Some(Ordering::Greater)
993                } else {
994                    let rnum = other.numer().magnitude();
995                    let rden = other.denom().magnitude();
996                    (self.numer() * rden).partial_cmp(&(self.denom() * rnum))
997                }
998            }
999        }
1000        impl NumOrd<Ratio<BigInt>> for BigUint {
1001            #[inline]
1002            fn num_partial_cmp(&self, other: &Ratio<BigInt>) -> Option<Ordering> {
1003                if other.is_negative() {
1004                    Some(Ordering::Greater)
1005                } else {
1006                    let rnum = other.numer().magnitude();
1007                    let rden = other.denom().magnitude();
1008                    (self * rden).partial_cmp(&rnum)
1009                }
1010            }
1011        }
1012        impl_ord_by_swap! {
1013            f32|Ratio<BigInt>; f32|Ratio<BigUint>;
1014            f64|Ratio<BigInt>; f64|Ratio<BigUint>;
1015            Ratio<BigInt>|Ratio<BigUint>; Ratio<BigInt>|BigUint;
1016        }
1017    }
1018}
1019
1020// Order of complex numbers is implemented as lexicographic order
1021#[cfg(feature = "num-complex")]
1022mod _num_complex {
1023    use super::*;
1024    use num_complex::{Complex, Complex32, Complex64};
1025
1026    macro_rules! impl_complex_ord_lexical {
1027        ($($t1:ty | $t2:ty;)*) => ($(
1028            impl NumOrd<Complex<$t2>> for Complex<$t1> {
1029                #[inline]
1030                fn num_partial_cmp(&self, other: &Complex<$t2>) -> Option<Ordering> {
1031                    let re_cmp = self.re.num_partial_cmp(&other.re);
1032                    if matches!(re_cmp, Some(o) if o == Ordering::Equal) {
1033                        self.im.num_partial_cmp(&other.im)
1034                    } else {
1035                        re_cmp
1036                    }
1037                }
1038            }
1039        )*);
1040        ($($t:ty)*) => ($(
1041            impl NumOrd<Complex<$t>> for Complex<$t> {
1042                #[inline]
1043                fn num_partial_cmp(&self, other: &Complex<$t>) -> Option<Ordering> {
1044                    let re_cmp = self.re.partial_cmp(&other.re);
1045                    if matches!(re_cmp, Some(o) if o == Ordering::Equal) {
1046                        self.im.partial_cmp(&other.im)
1047                    } else {
1048                        re_cmp
1049                    }
1050                }
1051            }
1052        )*);
1053    }
1054    impl_complex_ord_lexical!(f32 f64);
1055    impl_complex_ord_lexical!(f32|f64; f64|f32;);
1056
1057    macro_rules! impl_complex_ord_with_real {
1058        ($($t:ty)*) => ($(
1059            impl NumOrd<$t> for Complex32 {
1060                #[inline]
1061                fn num_partial_cmp(&self, other: &$t) -> Option<Ordering> {
1062                    if self.im.is_nan() { // shortcut nan tests
1063                        return None;
1064                    }
1065
1066                    let re_cmp = self.re.num_partial_cmp(other);
1067                    if matches!(re_cmp, Some(o) if o == Ordering::Equal) {
1068                        self.im.num_partial_cmp(&0f32)
1069                    } else {
1070                        re_cmp
1071                    }
1072                }
1073            }
1074            impl NumOrd<Complex32> for $t {
1075                #[inline]
1076                fn num_partial_cmp(&self, other: &Complex32) -> Option<Ordering> {
1077                    if other.im.is_nan() { // shortcut nan tests
1078                        return None;
1079                    }
1080
1081                    let re_cmp = self.num_partial_cmp(&other.re);
1082                    if matches!(re_cmp, Some(o) if o == Ordering::Equal) {
1083                        0f32.num_partial_cmp(&other.im)
1084                    } else {
1085                        re_cmp
1086                    }
1087                }
1088            }
1089            impl NumOrd<$t> for Complex64 {
1090                #[inline]
1091                fn num_partial_cmp(&self, other: &$t) -> Option<Ordering> {
1092                    if self.im.is_nan() { // shortcut nan tests
1093                        return None;
1094                    }
1095
1096                    let re_cmp = self.re.num_partial_cmp(other);
1097                    if matches!(re_cmp, Some(o) if o == Ordering::Equal) {
1098                        self.im.num_partial_cmp(&0f64)
1099                    } else {
1100                        re_cmp
1101                    }
1102                }
1103            }
1104            impl NumOrd<Complex64> for $t {
1105                #[inline]
1106                fn num_partial_cmp(&self, other: &Complex64) -> Option<Ordering> {
1107                    if other.im.is_nan() { // shortcut nan tests
1108                        return None;
1109                    }
1110
1111                    let re_cmp = self.num_partial_cmp(&other.re);
1112                    if matches!(re_cmp, Some(o) if o == Ordering::Equal) {
1113                        0f64.num_partial_cmp(&other.im)
1114                    } else {
1115                        re_cmp
1116                    }
1117                }
1118            }
1119        )*);
1120    }
1121    impl_complex_ord_with_real! (
1122        i8 i16 i32 i64 i128 isize
1123        u8 u16 u32 u64 u128 usize
1124        f32 f64
1125    );
1126
1127    #[cfg(feature = "num-bigint")]
1128    mod _num_bigint {
1129        use super::*;
1130        use num_bigint::{BigInt, BigUint};
1131        impl_complex_ord_with_real! (
1132            BigInt BigUint
1133        );
1134    }
1135
1136    #[cfg(feature = "num-rational")]
1137    mod _num_rational {
1138        use super::*;
1139        use num_rational::Ratio;
1140        impl_complex_ord_with_real! (
1141            Ratio<i8> Ratio<i16> Ratio<i32> Ratio<i64> Ratio<i128> Ratio<isize>
1142        );
1143
1144        #[cfg(feature = "num-bigint")]
1145        mod _num_bigint {
1146            use super::*;
1147            use num_bigint::{BigInt, BigUint};
1148            impl_complex_ord_with_real! (
1149                Ratio<BigInt> Ratio<BigUint>
1150            );
1151        }
1152    }
1153}