rune/runtime/vm_execution.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
use core::fmt;
use core::future::Future;
use core::mem::{replace, take};
use ::rust_alloc::sync::Arc;
use crate::alloc::prelude::*;
use crate::runtime::budget;
use crate::runtime::{
Generator, GeneratorState, InstAddress, Output, RuntimeContext, Stream, Unit, Value, Vm,
VmErrorKind, VmHalt, VmHaltInfo, VmResult,
};
use crate::shared::AssertSend;
use super::VmDiagnostics;
/// The state of an execution. We keep track of this because it's important to
/// correctly interact with functions that yield (like generators and streams)
/// by initially just calling the function, then by providing a value pushed
/// onto the stack.
#[derive(Debug, Clone, Copy, PartialEq)]
#[non_exhaustive]
pub(crate) enum ExecutionState {
/// The initial state of an execution.
Initial,
/// execution is waiting.
Resumed(Output),
/// Suspended execution.
Suspended,
/// Execution exited.
Exited(Option<InstAddress>),
}
impl fmt::Display for ExecutionState {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
ExecutionState::Initial => write!(f, "initial"),
ExecutionState::Resumed(out) => write!(f, "resumed({out})"),
ExecutionState::Suspended => write!(f, "suspended"),
ExecutionState::Exited(..) => write!(f, "exited"),
}
}
}
#[derive(TryClone)]
#[try_clone(crate)]
pub(crate) struct VmExecutionState {
pub(crate) context: Option<Arc<RuntimeContext>>,
pub(crate) unit: Option<Arc<Unit>>,
}
/// The execution environment for a virtual machine.
///
/// When an execution is dropped, the stack of the stack of the head machine
/// will be cleared.
pub struct VmExecution<T = Vm>
where
T: AsRef<Vm> + AsMut<Vm>,
{
/// The current head vm which holds the execution.
head: T,
/// The state of an execution.
state: ExecutionState,
/// Indicates the current stack of suspended contexts.
states: Vec<VmExecutionState>,
}
impl<T> VmExecution<T>
where
T: AsRef<Vm> + AsMut<Vm>,
{
/// Construct an execution from a virtual machine.
pub(crate) fn new(head: T) -> Self {
Self {
head,
state: ExecutionState::Initial,
states: Vec::new(),
}
}
/// Test if the current execution state is resumed.
pub(crate) fn is_resumed(&self) -> bool {
matches!(self.state, ExecutionState::Resumed(..))
}
/// Coerce the current execution into a generator if appropriate.
///
/// ```
/// use rune::Vm;
/// use std::sync::Arc;
///
/// let mut sources = rune::sources! {
/// entry => {
/// pub fn main() {
/// yield 1;
/// yield 2;
/// }
/// }
/// };
///
/// let unit = rune::prepare(&mut sources).build()?;
///
/// let mut vm = Vm::without_runtime(Arc::new(unit));
/// let mut generator = vm.execute(["main"], ())?.into_generator();
///
/// let mut n = 1i64;
///
/// while let Some(value) = generator.next().into_result()? {
/// let value: i64 = rune::from_value(value)?;
/// assert_eq!(value, n);
/// n += 1;
/// }
/// # Ok::<_, rune::support::Error>(())
/// ```
pub fn into_generator(self) -> Generator<T> {
Generator::from_execution(self)
}
/// Coerce the current execution into a stream if appropriate.
///
/// ```
/// use rune::Vm;
/// use std::sync::Arc;
///
/// # futures_executor::block_on(async move {
/// let mut sources = rune::sources! {
/// entry => {
/// pub async fn main() {
/// yield 1;
/// yield 2;
/// }
/// }
/// };
///
/// let unit = rune::prepare(&mut sources).build()?;
///
/// let mut vm = Vm::without_runtime(Arc::new(unit));
/// let mut stream = vm.execute(["main"], ())?.into_stream();
///
/// let mut n = 1i64;
///
/// while let Some(value) = stream.next().await.into_result()? {
/// let value: i64 = rune::from_value(value)?;
/// assert_eq!(value, n);
/// n += 1;
/// }
/// # Ok::<_, rune::support::Error>(())
/// # })?;
/// # Ok::<_, rune::support::Error>(())
/// ```
pub fn into_stream(self) -> Stream<T> {
Stream::from_execution(self)
}
/// Get a reference to the current virtual machine.
pub fn vm(&self) -> &Vm {
self.head.as_ref()
}
/// Get a mutable reference the current virtual machine.
pub fn vm_mut(&mut self) -> &mut Vm {
self.head.as_mut()
}
/// Complete the current execution without support for async instructions.
///
/// This will error if the execution is suspended through yielding.
pub async fn async_complete(&mut self) -> VmResult<Value> {
match vm_try!(self.async_resume().await) {
GeneratorState::Complete(value) => VmResult::Ok(value),
GeneratorState::Yielded(..) => VmResult::err(VmErrorKind::Halted {
halt: VmHaltInfo::Yielded,
}),
}
}
/// Complete the current execution without support for async instructions.
///
/// If any async instructions are encountered, this will error. This will
/// also error if the execution is suspended through yielding.
pub fn complete(&mut self) -> VmResult<Value> {
self.complete_with_diagnostics(None)
}
/// Complete the current execution without support for async instructions.
///
/// If any async instructions are encountered, this will error. This will
/// also error if the execution is suspended through yielding.
pub fn complete_with_diagnostics(
&mut self,
diagnostics: Option<&mut dyn VmDiagnostics>,
) -> VmResult<Value> {
match vm_try!(self.resume_with_diagnostics(diagnostics)) {
GeneratorState::Complete(value) => VmResult::Ok(value),
GeneratorState::Yielded(..) => VmResult::err(VmErrorKind::Halted {
halt: VmHaltInfo::Yielded,
}),
}
}
/// Resume the current execution with the given value and resume
/// asynchronous execution.
pub async fn async_resume_with(&mut self, value: Value) -> VmResult<GeneratorState> {
let state = replace(&mut self.state, ExecutionState::Suspended);
let ExecutionState::Resumed(out) = state else {
return VmResult::err(VmErrorKind::ExpectedExecutionState { actual: state });
};
vm_try!(out.store(self.head.as_mut().stack_mut(), value));
self.inner_async_resume(None).await
}
/// Resume the current execution with support for async instructions.
///
/// If the function being executed is a generator or stream this will resume
/// it while returning a unit from the current `yield`.
pub async fn async_resume(&mut self) -> VmResult<GeneratorState> {
self.async_resume_with_diagnostics(None).await
}
/// Resume the current execution with support for async instructions.
///
/// If the function being executed is a generator or stream this will resume
/// it while returning a unit from the current `yield`.
pub async fn async_resume_with_diagnostics(
&mut self,
diagnostics: Option<&mut dyn VmDiagnostics>,
) -> VmResult<GeneratorState> {
if let ExecutionState::Resumed(out) = self.state {
vm_try!(out.store(self.head.as_mut().stack_mut(), Value::unit));
}
self.inner_async_resume(diagnostics).await
}
async fn inner_async_resume(
&mut self,
mut diagnostics: Option<&mut dyn VmDiagnostics>,
) -> VmResult<GeneratorState> {
loop {
let vm = self.head.as_mut();
match vm_try!(vm
.run(match diagnostics {
Some(ref mut value) => Some(&mut **value),
None => None,
})
.with_vm(vm))
{
VmHalt::Exited(addr) => {
self.state = ExecutionState::Exited(addr);
}
VmHalt::Awaited(awaited) => {
vm_try!(awaited.into_vm(vm).await);
continue;
}
VmHalt::VmCall(vm_call) => {
vm_try!(vm_call.into_execution(self));
continue;
}
VmHalt::Yielded(addr, out) => {
let value = match addr {
Some(addr) => vm.stack().at(addr).clone(),
None => Value::unit(),
};
self.state = ExecutionState::Resumed(out);
return VmResult::Ok(GeneratorState::Yielded(value));
}
halt => {
return VmResult::err(VmErrorKind::Halted {
halt: halt.into_info(),
})
}
}
if self.states.is_empty() {
let value = vm_try!(self.end());
return VmResult::Ok(GeneratorState::Complete(value));
}
vm_try!(self.pop_state());
}
}
/// Resume the current execution with the given value and resume synchronous
/// execution.
#[tracing::instrument(skip_all, fields(?value))]
pub fn resume_with(&mut self, value: Value) -> VmResult<GeneratorState> {
let state = replace(&mut self.state, ExecutionState::Suspended);
let ExecutionState::Resumed(out) = state else {
return VmResult::err(VmErrorKind::ExpectedExecutionState { actual: state });
};
vm_try!(out.store(self.head.as_mut().stack_mut(), value));
self.inner_resume(None)
}
/// Resume the current execution without support for async instructions.
///
/// If the function being executed is a generator or stream this will resume
/// it while returning a unit from the current `yield`.
///
/// If any async instructions are encountered, this will error.
pub fn resume(&mut self) -> VmResult<GeneratorState> {
self.resume_with_diagnostics(None)
}
/// Resume the current execution without support for async instructions.
///
/// If the function being executed is a generator or stream this will resume
/// it while returning a unit from the current `yield`.
///
/// If any async instructions are encountered, this will error.
#[tracing::instrument(skip_all, fields(diagnostics=diagnostics.is_some()))]
pub fn resume_with_diagnostics(
&mut self,
diagnostics: Option<&mut dyn VmDiagnostics>,
) -> VmResult<GeneratorState> {
if let ExecutionState::Resumed(out) = replace(&mut self.state, ExecutionState::Suspended) {
vm_try!(out.store(self.head.as_mut().stack_mut(), Value::unit()));
}
self.inner_resume(diagnostics)
}
fn inner_resume(
&mut self,
mut diagnostics: Option<&mut dyn VmDiagnostics>,
) -> VmResult<GeneratorState> {
loop {
let len = self.states.len();
let vm = self.head.as_mut();
match vm_try!(vm
.run(match diagnostics {
Some(ref mut value) => Some(&mut **value),
None => None,
})
.with_vm(vm))
{
VmHalt::Exited(addr) => {
self.state = ExecutionState::Exited(addr);
}
VmHalt::VmCall(vm_call) => {
vm_try!(vm_call.into_execution(self));
continue;
}
VmHalt::Yielded(addr, out) => {
let value = match addr {
Some(addr) => vm.stack().at(addr).clone(),
None => Value::unit(),
};
self.state = ExecutionState::Resumed(out);
return VmResult::Ok(GeneratorState::Yielded(value));
}
halt => {
return VmResult::err(VmErrorKind::Halted {
halt: halt.into_info(),
});
}
}
if len == 0 {
let value = vm_try!(self.end());
return VmResult::Ok(GeneratorState::Complete(value));
}
vm_try!(self.pop_state());
}
}
/// Step the single execution for one step without support for async
/// instructions.
///
/// If any async instructions are encountered, this will error.
pub fn step(&mut self) -> VmResult<Option<Value>> {
let len = self.states.len();
let vm = self.head.as_mut();
match vm_try!(budget::with(1, || vm.run(None).with_vm(vm)).call()) {
VmHalt::Exited(addr) => {
self.state = ExecutionState::Exited(addr);
}
VmHalt::VmCall(vm_call) => {
vm_try!(vm_call.into_execution(self));
return VmResult::Ok(None);
}
VmHalt::Limited => return VmResult::Ok(None),
halt => {
return VmResult::err(VmErrorKind::Halted {
halt: halt.into_info(),
})
}
}
if len == 0 {
let value = vm_try!(self.end());
return VmResult::Ok(Some(value));
}
vm_try!(self.pop_state());
VmResult::Ok(None)
}
/// Step the single execution for one step with support for async
/// instructions.
pub async fn async_step(&mut self) -> VmResult<Option<Value>> {
let vm = self.head.as_mut();
match vm_try!(budget::with(1, || vm.run(None).with_vm(vm)).call()) {
VmHalt::Exited(addr) => {
self.state = ExecutionState::Exited(addr);
}
VmHalt::Awaited(awaited) => {
vm_try!(awaited.into_vm(vm).await);
return VmResult::Ok(None);
}
VmHalt::VmCall(vm_call) => {
vm_try!(vm_call.into_execution(self));
return VmResult::Ok(None);
}
VmHalt::Limited => return VmResult::Ok(None),
halt => {
return VmResult::err(VmErrorKind::Halted {
halt: halt.into_info(),
});
}
}
if self.states.is_empty() {
let value = vm_try!(self.end());
return VmResult::Ok(Some(value));
}
vm_try!(self.pop_state());
VmResult::Ok(None)
}
/// End execution and perform debug checks.
pub(crate) fn end(&mut self) -> VmResult<Value> {
let ExecutionState::Exited(addr) = self.state else {
return VmResult::err(VmErrorKind::ExpectedExitedExecutionState { actual: self.state });
};
let value = match addr {
Some(addr) => self.head.as_ref().stack().at(addr).clone(),
None => Value::unit(),
};
debug_assert!(self.states.is_empty(), "Execution states should be empty");
VmResult::Ok(value)
}
/// Push a virtual machine state onto the execution.
#[tracing::instrument(skip_all)]
pub(crate) fn push_state(&mut self, state: VmExecutionState) -> VmResult<()> {
tracing::trace!("pushing suspended state");
let vm = self.head.as_mut();
let context = state.context.map(|c| replace(vm.context_mut(), c));
let unit = state.unit.map(|u| replace(vm.unit_mut(), u));
vm_try!(self.states.try_push(VmExecutionState { context, unit }));
VmResult::Ok(())
}
/// Pop a virtual machine state from the execution and transfer the top of
/// the stack from the popped machine.
#[tracing::instrument(skip_all)]
fn pop_state(&mut self) -> VmResult<()> {
tracing::trace!("popping suspended state");
let state = vm_try!(self.states.pop().ok_or(VmErrorKind::NoRunningVm));
let vm = self.head.as_mut();
if let Some(context) = state.context {
*vm.context_mut() = context;
}
if let Some(unit) = state.unit {
*vm.unit_mut() = unit;
}
VmResult::Ok(())
}
}
impl VmExecution<&mut Vm> {
/// Convert the current execution into one which owns its virtual machine.
pub fn into_owned(self) -> VmExecution<Vm> {
let stack = take(self.head.stack_mut());
let head = Vm::with_stack(self.head.context().clone(), self.head.unit().clone(), stack);
VmExecution {
head,
states: self.states,
state: self.state,
}
}
}
/// A wrapper that makes [`VmExecution`] [`Send`].
///
/// This is accomplished by preventing any [`Value`] from escaping the [`Vm`].
/// As long as this is maintained, it is safe to send the execution across,
/// threads, and therefore schedule the future associated with the execution on
/// a thread pool like Tokio's through [tokio::spawn].
///
/// [tokio::spawn]: https://docs.rs/tokio/0/tokio/runtime/struct.Runtime.html#method.spawn
pub struct VmSendExecution(pub(crate) VmExecution<Vm>);
// Safety: we wrap all APIs around the [VmExecution], preventing values from
// escaping from contained virtual machine.
unsafe impl Send for VmSendExecution {}
impl VmSendExecution {
/// Complete the current execution with support for async instructions.
///
/// This requires that the result of the Vm is converted into a
/// [crate::FromValue] that also implements [Send], which prevents non-Send
/// values from escaping from the virtual machine.
pub fn async_complete(mut self) -> impl Future<Output = VmResult<Value>> + Send + 'static {
let future = async move {
let result = vm_try!(self.0.async_resume().await);
match result {
GeneratorState::Complete(value) => VmResult::Ok(value),
GeneratorState::Yielded(..) => VmResult::err(VmErrorKind::Halted {
halt: VmHaltInfo::Yielded,
}),
}
};
// Safety: we wrap all APIs around the [VmExecution], preventing values
// from escaping from contained virtual machine.
unsafe { AssertSend::new(future) }
}
/// Complete the current execution with support for async instructions.
///
/// This requires that the result of the Vm is converted into a
/// [crate::FromValue] that also implements [Send], which prevents non-Send
/// values from escaping from the virtual machine.
pub fn async_complete_with_diagnostics(
mut self,
diagnostics: Option<&mut dyn VmDiagnostics>,
) -> impl Future<Output = VmResult<Value>> + Send + '_ {
let future = async move {
let result = vm_try!(self.0.async_resume_with_diagnostics(diagnostics).await);
match result {
GeneratorState::Complete(value) => VmResult::Ok(value),
GeneratorState::Yielded(..) => VmResult::err(VmErrorKind::Halted {
halt: VmHaltInfo::Yielded,
}),
}
};
// Safety: we wrap all APIs around the [VmExecution], preventing values
// from escaping from contained virtual machine.
unsafe { AssertSend::new(future) }
}
}
impl<T> TryClone for VmExecution<T>
where
T: AsRef<Vm> + AsMut<Vm> + TryClone,
{
#[inline]
fn try_clone(&self) -> Result<Self, rune_alloc::Error> {
Ok(Self {
head: self.head.try_clone()?,
state: self.state,
states: self.states.try_clone()?,
})
}
}