num_modular/
preinv.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
use crate::{DivExact, ModularUnaryOps};

/// Pre-computing the modular inverse for fast divisibility check.
///
/// This struct stores the modular inverse of a divisor, and a limit for divisibility check.
/// See <https://math.stackexchange.com/a/1251328> for the explanation of the trick
#[derive(Debug, Clone, Copy)]
pub struct PreModInv<T> {
    d_inv: T, // modular inverse of divisor
    q_lim: T, // limit of residue
}

macro_rules! impl_preinv_for_prim_int {
    ($t:ident, $ns:ident) => {
        mod $ns {
            use super::*;
            use crate::word::$t::*;

            impl PreModInv<$t> {
                /// Construct the preinv instance with raw values.
                ///
                /// This function can be used to initialize preinv in a constant context, the divisor d
                /// is required only for verification of d_inv and q_lim.
                #[inline]
                pub const fn new(d_inv: $t, q_lim: $t) -> Self {
                    Self { d_inv, q_lim }
                }

                // check if the divisor is consistent in debug mode
                #[inline]
                fn debug_check(&self, d: $t) {
                    debug_assert!(d % 2 != 0, "only odd divisors are supported");
                    debug_assert!(d.wrapping_mul(self.d_inv) == 1);
                    debug_assert!(self.q_lim * d > (<$t>::MAX - d));
                }
            }

            impl From<$t> for PreModInv<$t> {
                #[inline]
                fn from(v: $t) -> Self {
                    use crate::word::$t::*;

                    debug_assert!(v % 2 != 0, "only odd divisors are supported");
                    let d_inv = extend(v).invm(&merge(0, 1)).unwrap() as $t;
                    let q_lim = <$t>::MAX / v;
                    Self { d_inv, q_lim }
                }
            }

            impl DivExact<$t, PreModInv<$t>> for $t {
                type Output = $t;
                #[inline]
                fn div_exact(self, d: $t, pre: &PreModInv<$t>) -> Option<Self> {
                    pre.debug_check(d);
                    let q = self.wrapping_mul(pre.d_inv);
                    if q <= pre.q_lim {
                        Some(q)
                    } else {
                        None
                    }
                }
            }

            impl DivExact<$t, PreModInv<$t>> for DoubleWord {
                type Output = DoubleWord;

                #[inline]
                fn div_exact(self, d: $t, pre: &PreModInv<$t>) -> Option<Self::Output> {
                    pre.debug_check(d);

                    // this implementation comes from GNU factor,
                    // see https://math.stackexchange.com/q/4436380/815652 for explanation

                    let (n0, n1) = split(self);
                    let q0 = n0.wrapping_mul(pre.d_inv);
                    let nr0 = wmul(q0, d);
                    let nr0 = split(nr0).1;
                    if nr0 > n1 {
                        return None;
                    }
                    let nr1 = n1 - nr0;
                    let q1 = nr1.wrapping_mul(pre.d_inv);
                    if q1 > pre.q_lim {
                        return None;
                    }
                    Some(merge(q0, q1))
                }
            }
        }
    };
}
impl_preinv_for_prim_int!(u8, u8_impl);
impl_preinv_for_prim_int!(u16, u16_impl);
impl_preinv_for_prim_int!(u32, u32_impl);
impl_preinv_for_prim_int!(u64, u64_impl);
impl_preinv_for_prim_int!(usize, usize_impl);

// XXX: unchecked div_exact can be introduced by not checking the q_lim,
//      investigate this after `exact_div` is introduced or removed from core lib
//      https://github.com/rust-lang/rust/issues/85122

#[cfg(test)]
mod tests {
    use super::*;
    use rand::random;

    #[test]
    fn div_exact_test() {
        const N: u8 = 100;
        for _ in 0..N {
            // u8 test
            let d = random::<u8>() | 1;
            let pre: PreModInv<_> = d.into();

            let n: u8 = random();
            let expect = if n % d == 0 { Some(n / d) } else { None };
            assert_eq!(n.div_exact(d, &pre), expect, "{} / {}", n, d);
            let n: u16 = random();
            let expect = if n % (d as u16) == 0 {
                Some(n / (d as u16))
            } else {
                None
            };
            assert_eq!(n.div_exact(d, &pre), expect, "{} / {}", n, d);

            // u16 test
            let d = random::<u16>() | 1;
            let pre: PreModInv<_> = d.into();

            let n: u16 = random();
            let expect = if n % d == 0 { Some(n / d) } else { None };
            assert_eq!(n.div_exact(d, &pre), expect, "{} / {}", n, d);
            let n: u32 = random();
            let expect = if n % (d as u32) == 0 {
                Some(n / (d as u32))
            } else {
                None
            };
            assert_eq!(n.div_exact(d, &pre), expect, "{} / {}", n, d);

            // u32 test
            let d = random::<u32>() | 1;
            let pre: PreModInv<_> = d.into();

            let n: u32 = random();
            let expect = if n % d == 0 { Some(n / d) } else { None };
            assert_eq!(n.div_exact(d, &pre), expect, "{} / {}", n, d);
            let n: u64 = random();
            let expect = if n % (d as u64) == 0 {
                Some(n / (d as u64))
            } else {
                None
            };
            assert_eq!(n.div_exact(d, &pre), expect, "{} / {}", n, d);

            // u64 test
            let d = random::<u64>() | 1;
            let pre: PreModInv<_> = d.into();

            let n: u64 = random();
            let expect = if n % d == 0 { Some(n / d) } else { None };
            assert_eq!(n.div_exact(d, &pre), expect, "{} / {}", n, d);
            let n: u128 = random();
            let expect = if n % (d as u128) == 0 {
                Some(n / (d as u128))
            } else {
                None
            };
            assert_eq!(n.div_exact(d, &pre), expect, "{} / {}", n, d);
        }
    }
}