num_modular/
mersenne.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
use crate::reduced::impl_reduced_binary_pow;
use crate::{udouble, umax, ModularUnaryOps, Reducer};

// FIXME: use unchecked operators to speed up calculation (after https://github.com/rust-lang/rust/issues/85122)
/// A modular reducer for (pseudo) Mersenne numbers `2^P - K` as modulus. It supports `P` up to 127 and `K < 2^(P-1)`
///
/// The `P` is limited to 127 so that it's not necessary to check overflow. This limit won't be a problem for any
/// Mersenne primes within the range of [umax] (i.e. [u128]).
#[derive(Debug, Clone, Copy)]
pub struct FixedMersenne<const P: u8, const K: umax>();

// XXX: support other primes as modulo, such as solinas prime, proth prime and support multi precision
// REF: Handbook of Cryptography 14.3.4

impl<const P: u8, const K: umax> FixedMersenne<P, K> {
    const BITMASK: umax = (1 << P) - 1;
    pub const MODULUS: umax = (1 << P) - K;

    // Calculate v % Self::MODULUS, where v is a umax integer
    const fn reduce_single(v: umax) -> umax {
        let mut lo = v & Self::BITMASK;
        let mut hi = v >> P;
        while hi > 0 {
            let sum = if K == 1 { hi + lo } else { hi * K + lo };
            lo = sum & Self::BITMASK;
            hi = sum >> P;
        }

        if lo >= Self::MODULUS {
            lo - Self::MODULUS
        } else {
            lo
        }
    }

    // Calculate v % Self::MODULUS, where v is a udouble integer
    fn reduce_double(v: udouble) -> umax {
        // reduce modulo
        let mut lo = v.lo & Self::BITMASK;
        let mut hi = v >> P;
        while hi.hi > 0 {
            // first reduce until high bits fit in umax
            let sum = if K == 1 { hi + lo } else { hi * K + lo };
            lo = sum.lo & Self::BITMASK;
            hi = sum >> P;
        }

        let mut hi = hi.lo;
        while hi > 0 {
            // then reduce the smaller high bits
            let sum = if K == 1 { hi + lo } else { hi * K + lo };
            lo = sum & Self::BITMASK;
            hi = sum >> P;
        }

        if lo >= Self::MODULUS {
            lo - Self::MODULUS
        } else {
            lo
        }
    }
}

impl<const P: u8, const K: umax> Reducer<umax> for FixedMersenne<P, K> {
    #[inline]
    fn new(m: &umax) -> Self {
        assert!(
            *m == Self::MODULUS,
            "the given modulus doesn't match with the generic params"
        );
        debug_assert!(P <= 127);
        debug_assert!(K > 0 && K < (2 as umax).pow(P as u32 - 1) && K % 2 == 1);
        debug_assert!(
            Self::MODULUS % 3 != 0
                && Self::MODULUS % 5 != 0
                && Self::MODULUS % 7 != 0
                && Self::MODULUS % 11 != 0
                && Self::MODULUS % 13 != 0
        ); // error on easy composites
        Self {}
    }
    #[inline]
    fn transform(&self, target: umax) -> umax {
        Self::reduce_single(target)
    }
    fn check(&self, target: &umax) -> bool {
        *target < Self::MODULUS
    }
    #[inline]
    fn residue(&self, target: umax) -> umax {
        target
    }
    #[inline]
    fn modulus(&self) -> umax {
        Self::MODULUS
    }
    #[inline]
    fn is_zero(&self, target: &umax) -> bool {
        target == &0
    }

    #[inline]
    fn add(&self, lhs: &umax, rhs: &umax) -> umax {
        let mut sum = lhs + rhs;
        if sum >= Self::MODULUS {
            sum -= Self::MODULUS
        }
        sum
    }
    #[inline]
    fn sub(&self, lhs: &umax, rhs: &umax) -> umax {
        if lhs >= rhs {
            lhs - rhs
        } else {
            Self::MODULUS - (rhs - lhs)
        }
    }
    #[inline]
    fn dbl(&self, target: umax) -> umax {
        self.add(&target, &target)
    }
    #[inline]
    fn neg(&self, target: umax) -> umax {
        if target == 0 {
            0
        } else {
            Self::MODULUS - target
        }
    }
    #[inline]
    fn mul(&self, lhs: &umax, rhs: &umax) -> umax {
        if (P as u32) < (umax::BITS / 2) {
            Self::reduce_single(lhs * rhs)
        } else {
            Self::reduce_double(udouble::widening_mul(*lhs, *rhs))
        }
    }
    #[inline]
    fn inv(&self, target: umax) -> Option<umax> {
        if (P as u32) < usize::BITS {
            (target as usize)
                .invm(&(Self::MODULUS as usize))
                .map(|v| v as umax)
        } else {
            target.invm(&Self::MODULUS)
        }
    }
    #[inline]
    fn sqr(&self, target: umax) -> umax {
        if (P as u32) < (umax::BITS / 2) {
            Self::reduce_single(target * target)
        } else {
            Self::reduce_double(udouble::widening_square(target))
        }
    }

    impl_reduced_binary_pow!(umax);
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::{ModularCoreOps, ModularPow};
    use rand::random;

    type M1 = FixedMersenne<31, 1>;
    type M2 = FixedMersenne<61, 1>;
    type M3 = FixedMersenne<127, 1>;
    type M4 = FixedMersenne<32, 5>;
    type M5 = FixedMersenne<56, 5>;
    type M6 = FixedMersenne<122, 3>;

    const NRANDOM: u32 = 10;

    #[test]
    fn creation_test() {
        // random creation test
        for _ in 0..NRANDOM {
            let a = random::<umax>();

            const P1: umax = (1 << 31) - 1;
            let m1 = M1::new(&P1);
            assert_eq!(m1.residue(m1.transform(a)), a % P1);
            const P2: umax = (1 << 61) - 1;
            let m2 = M2::new(&P2);
            assert_eq!(m2.residue(m2.transform(a)), a % P2);
            const P3: umax = (1 << 127) - 1;
            let m3 = M3::new(&P3);
            assert_eq!(m3.residue(m3.transform(a)), a % P3);
            const P4: umax = (1 << 32) - 5;
            let m4 = M4::new(&P4);
            assert_eq!(m4.residue(m4.transform(a)), a % P4);
            const P5: umax = (1 << 56) - 5;
            let m5 = M5::new(&P5);
            assert_eq!(m5.residue(m5.transform(a)), a % P5);
            const P6: umax = (1 << 122) - 3;
            let m6 = M6::new(&P6);
            assert_eq!(m6.residue(m6.transform(a)), a % P6);
        }
    }

    #[test]
    fn test_against_modops() {
        macro_rules! tests_for {
            ($a:tt, $b:tt, $e:tt; $($M:ty)*) => ($({
                const P: umax = <$M>::MODULUS;
                let r = <$M>::new(&P);
                let am = r.transform($a);
                let bm = r.transform($b);
                assert_eq!(r.add(&am, &bm), $a.addm($b, &P));
                assert_eq!(r.sub(&am, &bm), $a.subm($b, &P));
                assert_eq!(r.mul(&am, &bm), $a.mulm($b, &P));
                assert_eq!(r.neg(am), $a.negm(&P));
                assert_eq!(r.inv(am), $a.invm(&P));
                assert_eq!(r.dbl(am), $a.dblm(&P));
                assert_eq!(r.sqr(am), $a.sqm(&P));
                assert_eq!(r.pow(am, &$e), $a.powm($e, &P));
            })*);
        }

        for _ in 0..NRANDOM {
            let (a, b) = (random::<u128>(), random::<u128>());
            let e = random::<u8>() as umax;
            tests_for!(a, b, e; M1 M2 M3 M4 M5 M6);
        }
    }
}