musli/alloc/
stack.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
#[cfg(test)]
mod tests;

use core::cell::UnsafeCell;
use core::marker::PhantomData;
use core::mem::{align_of, forget, replace, size_of, MaybeUninit};
use core::num::NonZeroU16;
use core::ops::{Deref, DerefMut};
use core::ptr;

use super::{Allocator, RawVec};

// We keep max bytes to 2^31, since that ensures that addition between two
// magnitutes never overflow.
const MAX_BYTES: usize = i32::MAX as usize;

/// A no-std compatible slice-based allocator that can be used with the `musli`
/// crate.
///
/// It is geared towards handling few allocations, but they can be arbitrarily
/// large. It is optimized to work best when allocations are short lived and
/// "merged back" into one previously allocated region through
/// `Buffer::extend`.
///
/// It's also optimized to write to one allocation "at a time". So once an
/// allocation has been grown once, it will be put in a region where it is
/// unlikely to need to be moved again, usually the last region which has access
/// to the remainder of the provided buffer.
///
/// For the moment, this allocator only supports 65535 unique allocations, which
/// is fine for use with the `musli` crate, but might be a limitation for other
/// use-cases.
///
/// ## Examples
///
/// ```
/// use musli::alloc::{ArrayBuffer, Slice, Vec};
///
/// let mut buf = ArrayBuffer::new();
/// let alloc = Slice::new(&mut buf);
///
/// let mut a = Vec::new_in(&alloc);
/// let mut b = Vec::new_in(&alloc);
///
/// b.write(b"He11o");
/// a.write(b.as_slice());
///
/// assert_eq!(a.as_slice(), b"He11o");
/// assert_eq!(a.len(), 5);
///
/// a.write(b" W0rld");
///
/// assert_eq!(a.as_slice(), b"He11o W0rld");
/// assert_eq!(a.len(), 11);
///
/// let mut c = Vec::new_in(&alloc);
/// c.write(b"!");
/// a.write(c.as_slice());
///
/// assert_eq!(a.as_slice(), b"He11o W0rld!");
/// assert_eq!(a.len(), 12);
/// ```
///
/// ## Design
///
/// The allocator takes a buffer of contiguous memory. This is dynamically
/// diviced into two parts:
///
/// * One part which grows upwards from the base, constituting the memory being
///   allocated.
/// * Its metadata growing downward from the end of the buffer, containing
///   headers for all allocated region.
///
/// By designing the allocator so that the memory allocated and its metadata is
/// separate, neighbouring regions can efficiently be merged as they are written
/// or freed.
///
/// Each allocation is sparse, meaning it does not try to over-allocate memory.
/// This ensures that subsequent regions with initialized memory can be merged
/// efficiently, but degrades performance for many small writes performed across
/// multiple allocations concurrently.
///
/// Below is an illustration of this, where `a` and `b` are two allocations
/// where we write one byte at a time to each. Here `x` below indicates an
/// occupied `gap` in memory regions.
///
/// ```text
/// a
/// ab
/// # a moved to end
/// xbaa
/// # b moved to 0
/// bbaa
/// # aa not moved
/// bbaaa
/// # bb moved to end
/// xxaaabbb
/// # aaa moved to 0
/// aaaaxbbb
/// # bbb not moved
/// aaaaxbbbb
/// # aaaa not moved
/// aaaaabbbb
/// # bbbbb not moved
/// aaaaabbbbb
/// # aaaaa moved to end
/// xxxxxbbbbbaaaaaa
/// # bbbbb moved to 0
/// bbbbbbxxxxaaaaaa
/// ```
pub struct Slice<'a> {
    // This must be an unsafe cell, since it's mutably accessed through an
    // immutable pointers. We simply make sure that those accesses do not
    // clobber each other, which we can do since the API is restricted through
    // the `RawVec` trait.
    internal: UnsafeCell<Internal>,
    // The underlying vector being borrowed.
    _marker: PhantomData<&'a mut [MaybeUninit<u8>]>,
}

impl<'a> Slice<'a> {
    /// Construct a new slice allocator.
    ///
    /// See [type-level documentation][Slice] for more information.
    ///
    /// # Panics
    ///
    /// This panics if called with a buffer larger than `2^31` bytes.
    pub fn new(buffer: &'a mut [MaybeUninit<u8>]) -> Self {
        let size = buffer.len();
        assert!(
            size <= MAX_BYTES,
            "Buffer of {size} bytes is larger than the maximum {MAX_BYTES}"
        );

        let mut data = Range::new(buffer.as_mut_ptr_range());

        // The region of allocated headers grows downwards from the end of the
        // buffer, so in order to ensure headers are aligned, we simply align
        // the end pointer of the buffer preemptively here. Then we don't have
        // to worry about it.
        let align = data.end.align_offset(align_of::<Header>());

        if align != 0 {
            let sub = align_of::<Header>() - align;

            if sub <= size {
                // SAFETY: We've ensured that the adjustment is less than the
                // size of the buffer.
                unsafe {
                    data.end = data.end.sub(sub);
                }
            } else {
                data.end = data.start;
            }
        }

        Self {
            internal: UnsafeCell::new(Internal {
                free_head: None,
                tail: None,
                occupied: None,
                full: data,
                free: data,
            }),
            _marker: PhantomData,
        }
    }
}

impl Allocator for Slice<'_> {
    type RawVec<'this, T> = SliceBuf<'this, T> where Self: 'this, T: 'this;

    #[inline]
    fn new_raw_vec<'a, T>(&'a self) -> Self::RawVec<'a, T>
    where
        T: 'a,
    {
        // SAFETY: We have exclusive access to the internal state, and it's only
        // held for the duration of this call.
        let region = if size_of::<T>() == 0 {
            None
        } else {
            unsafe {
                (*self.internal.get())
                    .alloc(0, align_of::<T>())
                    .map(|r| r.id)
            }
        };

        SliceBuf {
            region,
            internal: &self.internal,
            _marker: PhantomData,
        }
    }
}

/// A slice allocated buffer.
///
/// See [`Slice`].
pub struct SliceBuf<'a, T> {
    region: Option<HeaderId>,
    internal: &'a UnsafeCell<Internal>,
    _marker: PhantomData<T>,
}

impl<'a, T> RawVec<T> for SliceBuf<'a, T> {
    #[inline]
    fn resize(&mut self, len: usize, additional: usize) -> bool {
        if additional == 0 || size_of::<T>() == 0 {
            return true;
        }

        let Some(region_id) = self.region else {
            return false;
        };

        let Some(len) = len.checked_mul(size_of::<T>()) else {
            return false;
        };

        let Some(additional) = additional.checked_mul(size_of::<T>()) else {
            return false;
        };

        let Some(requested) = len.checked_add(additional) else {
            return false;
        };

        if requested > MAX_BYTES {
            return false;
        }

        // SAFETY: Due to invariants in the Buffer trait we know that these
        // cannot be used incorrectly.
        unsafe {
            let i = &mut *self.internal.get();

            let region = i.region(region_id);

            // Region can already fit in the requested bytes.
            if region.capacity() >= requested {
                return true;
            };

            let Some(region) = i.realloc(region_id, len, requested, align_of::<T>()) else {
                return false;
            };

            self.region = Some(region.id);
            true
        }
    }

    #[inline]
    fn as_ptr(&self) -> *const T {
        let Some(region) = self.region else {
            return ptr::NonNull::dangling().as_ptr();
        };

        unsafe {
            let i = &*self.internal.get();
            let this = i.header(region);
            this.range.start.cast_const().cast()
        }
    }

    #[inline]
    fn as_mut_ptr(&mut self) -> *mut T {
        let Some(region) = self.region else {
            return ptr::NonNull::dangling().as_ptr();
        };

        unsafe {
            let i = &*self.internal.get();
            let this = i.header(region);
            this.range.start.cast()
        }
    }

    #[inline]
    fn try_merge<B>(&mut self, this_len: usize, buf: B, other_len: usize) -> Result<(), B>
    where
        B: RawVec<T>,
    {
        let Some(region) = self.region else {
            return Err(buf);
        };

        let this_len = this_len * size_of::<T>();
        let other_len = other_len * size_of::<T>();

        // NB: Placing this here to make miri happy, since accessing the
        // slice will mean mutably accessing the internal state.
        let other_ptr = buf.as_ptr().cast();

        unsafe {
            let i = &mut *self.internal.get();
            let mut this = i.region(region);

            debug_assert!(this.capacity() >= this_len);

            // If this region immediately follows the other region, we can
            // optimize the write by simply growing the current region and
            // de-allocating the second since the only conclusion is that
            // they share the same allocator.
            if !ptr::eq(this.range.end.cast_const(), other_ptr) {
                return Err(buf);
            }

            let Some(next) = this.next else {
                return Err(buf);
            };

            // Prevent the other buffer from being dropped, since we're
            // taking care of the allocation in here directly instead.
            forget(buf);

            let next = i.region(next);

            let to = this.range.start.wrapping_add(this_len);

            // Data needs to be shuffle back to the end of the initialized
            // region.
            if this.range.end != to {
                this.range.end.copy_to(to, other_len);
            }

            let old = i.free_region(next);
            this.range.end = old.range.end;
            Ok(())
        }
    }
}

impl<T> Drop for SliceBuf<'_, T> {
    fn drop(&mut self) {
        if let Some(region) = self.region.take() {
            // SAFETY: We have exclusive access to the internal state.
            unsafe {
                (*self.internal.get()).free(region);
            }
        }
    }
}

struct Region {
    id: HeaderId,
    ptr: *mut Header,
}

impl Deref for Region {
    type Target = Header;

    #[inline]
    fn deref(&self) -> &Self::Target {
        // SAFETY: Construction of the region is unsafe, so the caller must
        // ensure that it's used correctly after that.
        unsafe { &*self.ptr }
    }
}

impl DerefMut for Region {
    #[inline]
    fn deref_mut(&mut self) -> &mut Self::Target {
        // SAFETY: Construction of the region is unsafe, so the caller must
        // ensure that it's used correctly after that.
        unsafe { &mut *self.ptr }
    }
}

/// The identifier of a region.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[cfg_attr(test, derive(PartialOrd, Ord, Hash))]
#[repr(transparent)]
struct HeaderId(NonZeroU16);

impl HeaderId {
    #[cfg(test)]
    const unsafe fn new_unchecked(value: u16) -> Self {
        Self(NonZeroU16::new_unchecked(value))
    }

    /// Create a new region identifier.
    ///
    /// # Safety
    ///
    /// The given value must be non-zero.
    #[inline]
    fn new(value: isize) -> Option<Self> {
        Some(Self(NonZeroU16::new(u16::try_from(value).ok()?)?))
    }

    /// Get the value of the region identifier.
    #[inline]
    fn get(self) -> usize {
        self.0.get() as usize
    }
}

#[derive(Debug, Clone, Copy, PartialEq, Eq)]
struct Range {
    start: *mut MaybeUninit<u8>,
    end: *mut MaybeUninit<u8>,
}

impl Range {
    fn new(range: core::ops::Range<*mut MaybeUninit<u8>>) -> Self {
        Self {
            start: range.start,
            end: range.end,
        }
    }

    fn head(self) -> Range {
        Self {
            start: self.start,
            end: self.start,
        }
    }
}

struct Internal {
    // The first free region.
    free_head: Option<HeaderId>,
    // Pointer to the tail region.
    tail: Option<HeaderId>,
    // The occupied header region
    occupied: Option<HeaderId>,
    // The full range used by the allocator.
    full: Range,
    // The free range available to the allocator.
    free: Range,
}

impl Internal {
    // Return the number of allocates bytes.
    #[cfg(test)]
    #[inline]
    fn bytes(&self) -> usize {
        // SAFETY: It is guaranteed that free_end >= free_start inside of the provided region.
        unsafe { self.free.start.byte_offset_from(self.full.start) as usize }
    }

    #[cfg(test)]
    #[inline]
    fn headers(&self) -> usize {
        unsafe {
            self.full
                .end
                .cast::<Header>()
                .offset_from(self.free.end.cast()) as usize
        }
    }

    // Return the number of remaining bytes.
    #[inline]
    fn remaining(&self) -> usize {
        // SAFETY: It is guaranteed that free_end >= free_start inside of the provided region.
        unsafe { self.free.end.byte_offset_from(self.free.start) as usize }
    }

    /// Get the header pointer corresponding to the given id.
    #[inline]
    fn header(&self, at: HeaderId) -> &Header {
        // SAFETY: Once we've coerced to `&self`, then we guarantee that we can
        // get a header immutably.
        unsafe { &*self.full.end.cast::<Header>().wrapping_sub(at.get()) }
    }

    /// Get the mutable header pointer corresponding to the given id.
    #[inline]
    fn header_mut(&mut self, at: HeaderId) -> *mut Header {
        self.full.end.cast::<Header>().wrapping_sub(at.get())
    }

    /// Get the mutable region corresponding to the given id.
    #[inline]
    fn region(&mut self, id: HeaderId) -> Region {
        Region {
            id,
            ptr: self.header_mut(id),
        }
    }

    unsafe fn unlink(&mut self, header: &Header) {
        if let Some(next) = header.next {
            (*self.header_mut(next)).prev = header.prev;
        } else {
            self.tail = header.prev;
        }

        if let Some(prev) = header.prev {
            (*self.header_mut(prev)).next = header.next;
        }
    }

    unsafe fn replace_back(&mut self, region: &mut Region) {
        let prev = region.prev.take();
        let next = region.next.take();

        if let Some(prev) = prev {
            (*self.header_mut(prev)).next = next;
        }

        if let Some(next) = next {
            (*self.header_mut(next)).prev = prev;
        }

        self.push_back(region);
    }

    unsafe fn push_back(&mut self, region: &mut Region) {
        if let Some(tail) = self.tail.replace(region.id) {
            region.prev = Some(tail);
            (*self.header_mut(tail)).next = Some(region.id);
        }
    }

    /// Free a region.
    unsafe fn free_region(&mut self, region: Region) -> Header {
        self.unlink(&region);

        region.ptr.replace(Header {
            range: self.full.head(),
            next: self.free_head.replace(region.id),
            prev: None,
        })
    }

    /// Allocate a new header.
    ///
    /// # Safety
    ///
    /// The caller msut ensure that there is enough space for the region and
    /// that the end pointer has been aligned to the requirements of `Header`.
    unsafe fn alloc_header(&mut self, end: *mut MaybeUninit<u8>) -> Option<Region> {
        if let Some(region) = self.free_head.take() {
            let mut region = self.region(region);

            region.range.start = self.free.start;
            region.range.end = end;

            return Some(region);
        }

        debug_assert_eq!(
            self.free.end.align_offset(align_of::<Header>()),
            0,
            "End pointer should be aligned to header"
        );

        let ptr = self.free.end.cast::<Header>().wrapping_sub(1);

        if ptr < self.free.start.cast() || ptr >= self.free.end.cast() {
            return None;
        }

        let id = HeaderId::new(self.full.end.cast::<Header>().offset_from(ptr))?;

        ptr.write(Header {
            range: Range::new(self.free.start..end),
            prev: None,
            next: None,
        });

        self.free.end = ptr.cast();
        Some(Region { id, ptr })
    }

    /// Allocate a region.
    ///
    /// # Safety
    ///
    /// The caller must ensure that `this` is exclusively available.
    unsafe fn alloc(&mut self, requested: usize, align: usize) -> Option<Region> {
        if let Some(occupied) = self.occupied {
            let region = self.region(occupied);

            if region.capacity() >= requested && region.is_aligned(align) {
                self.occupied = None;
                return Some(region);
            }
        }

        self.align(align)?;

        if self.remaining() < requested {
            return None;
        }

        let end = self.free.start.wrapping_add(requested);

        let mut region = self.alloc_header(end)?;

        self.free.start = end;
        debug_assert!(self.free.start <= self.free.end);
        self.push_back(&mut region);
        Some(region)
    }

    /// Align the free region by the specified alignment.
    ///
    /// This might require either expanding the tail region, or introducing an
    /// occupied region which matches the number of bytes needed to fulfill the
    /// specified alignment.
    unsafe fn align(&mut self, align: usize) -> Option<()> {
        let align = self.free.start.align_offset(align);

        if align == 0 {
            return Some(());
        }

        if self.remaining() < align {
            return None;
        }

        let aligned_start = self.free.start.wrapping_add(align);

        if let Some(tail) = self.tail {
            // Simply expand the tail region to fill the gap created.
            self.region(tail).range.end = aligned_start;
        } else {
            // We need to construct a new occupied header to fill in the gap
            // which we just aligned from since there is no previous region to
            // expand.
            let mut region = self.alloc_header(aligned_start)?;

            self.push_back(&mut region);
        }

        self.free.start = aligned_start;
        Some(())
    }

    unsafe fn free(&mut self, region: HeaderId) {
        let region = self.region(region);

        // Just free up the last region in the slab.
        if region.next.is_none() {
            self.free_tail(region);
            return;
        }

        // If there is no previous region, then mark this region as occupy.
        let Some(prev) = region.prev else {
            debug_assert!(
                self.occupied.is_none(),
                "There can only be one occupied region"
            );

            self.occupied = Some(region.id);
            return;
        };

        let mut prev = self.region(prev);

        // Move allocation to the previous region.
        let region = self.free_region(region);

        prev.range.end = region.range.end;

        // The current header being freed is the last in the list.
        if region.next.is_none() {
            self.free.start = region.range.start;
        }
    }

    /// Free the tail starting at the `current` region.
    unsafe fn free_tail(&mut self, current: Region) {
        debug_assert_eq!(self.tail, Some(current.id));

        let current = self.free_region(current);
        debug_assert_eq!(current.next, None);

        self.free.start = match current.prev {
            // The prior region is occupied, so we can free that as well.
            Some(prev) if self.occupied == Some(prev) => {
                self.occupied = None;
                let prev = self.region(prev);
                self.free_region(prev).range.start
            }
            _ => current.range.start,
        };
    }

    unsafe fn reserve(&mut self, additional: usize, align: usize) -> Option<*mut MaybeUninit<u8>> {
        self.align(align)?;

        let free_start = self.free.start.wrapping_add(additional);

        if free_start > self.free.end || free_start < self.free.start {
            return None;
        }

        Some(free_start)
    }

    unsafe fn realloc(
        &mut self,
        from: HeaderId,
        len: usize,
        requested: usize,
        align: usize,
    ) -> Option<Region> {
        let mut from = self.region(from);

        // This is the last region in the slab, so we can just expand it.
        if from.next.is_none() {
            // Before we call realloc, we check the capacity of the current
            // region. So we know that it is <= requested.
            let additional = requested - from.capacity();
            self.free.start = self.reserve(additional, align)?;
            from.range.end = from.range.end.add(additional);
            return Some(from);
        }

        // There is no data allocated in the current region, so we can simply
        // re-link it to the end of the chain of allocation.
        if from.range.start == from.range.end {
            let free_start = self.reserve(requested, align)?;
            from.range.start = replace(&mut self.free.start, free_start);
            from.range.end = free_start;
            self.replace_back(&mut from);
            return Some(from);
        }

        // Try to merge with a preceeding region, if the requested memory can
        // fit in it.
        'bail: {
            // Check if the immediate prior region can fit the requested allocation.
            let Some(prev) = from.prev else {
                break 'bail;
            };

            if self.occupied != Some(prev) {
                break 'bail;
            }

            let mut prev = self.region(prev);

            if prev.capacity() + from.capacity() < requested {
                break 'bail;
            }

            if !prev.is_aligned(align) {
                break 'bail;
            }

            let from = self.free_region(from);

            from.range.start.copy_to(prev.range.start, len);
            prev.range.end = from.range.end;
            self.occupied = None;
            return Some(prev);
        }

        let to = self.alloc(requested, align)?;
        from.range.start.copy_to_nonoverlapping(to.range.start, len);
        self.free(from.id);
        Some(to)
    }
}

/// The header of a region.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
struct Header {
    // The range of the allocated region.
    range: Range,
    // The previous region.
    prev: Option<HeaderId>,
    // The next region.
    next: Option<HeaderId>,
}

impl Header {
    #[inline]
    fn capacity(&self) -> usize {
        // SAFETY: Both pointers are defined within the region.
        unsafe { self.range.end.byte_offset_from(self.range.start) as usize }
    }

    /// Test if region is aligned to `align`.
    #[inline]
    fn is_aligned(&self, align: usize) -> bool {
        self.range.start.align_offset(align) == 0
    }
}