musli/fixed.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
//! Fixed containers.
//!
//! These can be used to store or reference a fixed amount of data, usually on
//! the stack.
use core::fmt;
use core::mem::MaybeUninit;
use core::ops::{Deref, DerefMut};
use core::ptr;
use crate::alloc::Vec;
use crate::writer::Writer;
use crate::Context;
/// An error raised when we are at capacity.
#[non_exhaustive]
pub(crate) struct CapacityError;
/// A fixed-size bytes storage which keeps track of how much has been
/// initialized.
pub struct FixedBytes<const N: usize> {
/// Data storage.
data: [MaybeUninit<u8>; N],
/// How many bytes have been initialized.
init: usize,
}
impl<const N: usize> FixedBytes<N> {
/// Construct a new fixed bytes array storage.
#[inline]
pub const fn new() -> Self {
Self {
// SAFETY: MaybeUnint::uninit_array is not stable.
data: unsafe { MaybeUninit::<[MaybeUninit<u8>; N]>::uninit().assume_init() },
init: 0,
}
}
/// Construct a fixed bytes while asserting that the given runtime capacity isn't violated.
pub fn with_capacity(capacity: usize) -> Self {
assert!(
capacity < N,
"Requested capacity {capacity} is larger than {N}"
);
Self::new()
}
/// Get the length of the collection.
#[inline]
pub const fn len(&self) -> usize {
self.init
}
/// Test if the current container is empty.
#[inline]
pub const fn is_empty(&self) -> bool {
self.init == 0
}
/// Clear the [FixedBytes] container.
#[inline]
pub fn clear(&mut self) {
self.init = 0;
}
/// Get the remaining capacity of the [FixedBytes].
#[inline]
pub const fn remaining(&self) -> usize {
N.saturating_sub(self.init)
}
/// Coerce into the underlying bytes if all of them have been initialized.
#[inline]
pub fn into_bytes(self) -> Option<[u8; N]> {
if self.init == N {
// SAFETY: All of the bytes in the sequence have been initialized
// and can be safety transmuted.
//
// Method of transmuting comes from the implementation of
// `MaybeUninit::array_assume_init` which is not yet stable.
unsafe { Some((&self.data as *const _ as *const [u8; N]).read()) }
} else {
None
}
}
/// Coerce into the slice of initialized memory which is present.
#[inline]
pub fn as_slice(&self) -> &[u8] {
if self.init == 0 {
return &[];
}
// SAFETY: We've asserted that `initialized` accounts for the number of
// bytes that have been initialized.
unsafe { core::slice::from_raw_parts(self.data.as_ptr().cast(), self.init) }
}
/// Coerce into the mutable slice of initialized memory which is present.
#[inline]
pub fn as_mut_slice(&mut self) -> &mut [u8] {
if self.init == 0 {
return &mut [];
}
// SAFETY: We've asserted that `initialized` accounts for the number of
// bytes that have been initialized.
unsafe { core::slice::from_raw_parts_mut(self.data.as_mut_ptr().cast(), self.init) }
}
/// Try and push a single byte.
#[inline]
pub fn push(&mut self, value: u8) -> bool {
if N.saturating_sub(self.init) == 0 {
return false;
}
unsafe {
self.data
.as_mut_ptr()
.cast::<u8>()
.add(self.init)
.write(value)
}
self.init += 1;
true
}
/// Try and extend from the given slice.
#[inline]
pub fn extend_from_slice(&mut self, source: &[u8]) -> bool {
if source.len() > N.saturating_sub(self.init) {
return false;
}
unsafe {
let dst = (self.data.as_mut_ptr() as *mut u8).add(self.init);
ptr::copy_nonoverlapping(source.as_ptr(), dst, source.len());
}
self.init = self.init.wrapping_add(source.len());
true
}
/// Try and extend from the given slice.
#[inline]
pub fn write_bytes<C>(&mut self, cx: &C, source: &[u8]) -> Result<(), C::Error>
where
C: ?Sized + Context,
{
if !self.extend_from_slice(source) {
return Err(cx.message(FixedBytesOverflow {
at: self.init,
additional: source.len(),
capacity: N,
}));
}
Ok(())
}
}
impl<const N: usize> Deref for FixedBytes<N> {
type Target = [u8];
#[inline]
fn deref(&self) -> &Self::Target {
self.as_slice()
}
}
impl<const N: usize> DerefMut for FixedBytes<N> {
#[inline]
fn deref_mut(&mut self) -> &mut Self::Target {
self.as_mut_slice()
}
}
impl<const N: usize> Default for FixedBytes<N> {
#[inline]
fn default() -> Self {
Self::new()
}
}
impl<const N: usize> Writer for FixedBytes<N> {
type Mut<'this> = &'this mut Self where Self: 'this;
#[inline]
fn borrow_mut(&mut self) -> Self::Mut<'_> {
self
}
#[inline]
fn extend<C>(&mut self, cx: &C, buffer: Vec<'_, u8, C::Allocator>) -> Result<(), C::Error>
where
C: ?Sized + Context,
{
// SAFETY: the buffer never outlives this function call.
self.write_bytes(cx, buffer.as_slice())
}
#[inline]
fn write_bytes<C>(&mut self, cx: &C, bytes: &[u8]) -> Result<(), C::Error>
where
C: ?Sized + Context,
{
FixedBytes::write_bytes(self, cx, bytes)?;
cx.advance(bytes.len());
Ok(())
}
}
/// Capacity error raised by trying to write to a [FixedBytes] with no remaining
/// capacity.
#[derive(Debug)]
#[allow(missing_docs)]
#[non_exhaustive]
pub(crate) struct FixedBytesOverflow {
at: usize,
additional: usize,
capacity: usize,
}
impl fmt::Display for FixedBytesOverflow {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let FixedBytesOverflow {
at,
additional,
capacity,
} = self;
write!(
f,
"Tried to write {additional} bytes at {at} with capacity {capacity}"
)
}
}