syn/fixup.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
use crate::classify;
use crate::expr::Expr;
#[cfg(feature = "full")]
use crate::expr::{
ExprBreak, ExprRange, ExprRawAddr, ExprReference, ExprReturn, ExprUnary, ExprYield,
};
use crate::precedence::Precedence;
#[cfg(feature = "full")]
use crate::ty::ReturnType;
pub(crate) struct FixupContext {
#[cfg(feature = "full")]
previous_operator: Precedence,
#[cfg(feature = "full")]
next_operator: Precedence,
// Print expression such that it can be parsed back as a statement
// consisting of the original expression.
//
// The effect of this is for binary operators in statement position to set
// `leftmost_subexpression_in_stmt` when printing their left-hand operand.
//
// (match x {}) - 1; // match needs parens when LHS of binary operator
//
// match x {}; // not when its own statement
//
#[cfg(feature = "full")]
stmt: bool,
// This is the difference between:
//
// (match x {}) - 1; // subexpression needs parens
//
// let _ = match x {} - 1; // no parens
//
// There are 3 distinguishable contexts in which `print_expr` might be
// called with the expression `$match` as its argument, where `$match`
// represents an expression of kind `ExprKind::Match`:
//
// - stmt=false leftmost_subexpression_in_stmt=false
//
// Example: `let _ = $match - 1;`
//
// No parentheses required.
//
// - stmt=false leftmost_subexpression_in_stmt=true
//
// Example: `$match - 1;`
//
// Must parenthesize `($match)`, otherwise parsing back the output as a
// statement would terminate the statement after the closing brace of
// the match, parsing `-1;` as a separate statement.
//
// - stmt=true leftmost_subexpression_in_stmt=false
//
// Example: `$match;`
//
// No parentheses required.
#[cfg(feature = "full")]
leftmost_subexpression_in_stmt: bool,
// Print expression such that it can be parsed as a match arm.
//
// This is almost equivalent to `stmt`, but the grammar diverges a tiny bit
// between statements and match arms when it comes to braced macro calls.
// Macro calls with brace delimiter terminate a statement without a
// semicolon, but do not terminate a match-arm without comma.
//
// m! {} - 1; // two statements: a macro call followed by -1 literal
//
// match () {
// _ => m! {} - 1, // binary subtraction operator
// }
//
#[cfg(feature = "full")]
match_arm: bool,
// This is almost equivalent to `leftmost_subexpression_in_stmt`, other than
// for braced macro calls.
//
// If we have `m! {} - 1` as an expression, the leftmost subexpression
// `m! {}` will need to be parenthesized in the statement case but not the
// match-arm case.
//
// (m! {}) - 1; // subexpression needs parens
//
// match () {
// _ => m! {} - 1, // no parens
// }
//
#[cfg(feature = "full")]
leftmost_subexpression_in_match_arm: bool,
// This is the difference between:
//
// if let _ = (Struct {}) {} // needs parens
//
// match () {
// () if let _ = Struct {} => {} // no parens
// }
//
#[cfg(feature = "full")]
condition: bool,
// This is the difference between:
//
// if break Struct {} == (break) {} // needs parens
//
// if break break == Struct {} {} // no parens
//
#[cfg(feature = "full")]
rightmost_subexpression_in_condition: bool,
// This is the difference between:
//
// if break ({ x }).field + 1 {} needs parens
//
// if break 1 + { x }.field {} // no parens
//
#[cfg(feature = "full")]
leftmost_subexpression_in_optional_operand: bool,
// This is the difference between:
//
// let _ = (return) - 1; // without paren, this would return -1
//
// let _ = return + 1; // no paren because '+' cannot begin expr
//
#[cfg(feature = "full")]
next_operator_can_begin_expr: bool,
// This is the difference between:
//
// let _ = 1 + return 1; // no parens if rightmost subexpression
//
// let _ = 1 + (return 1) + 1; // needs parens
//
#[cfg(feature = "full")]
next_operator_can_continue_expr: bool,
// This is the difference between:
//
// let _ = x as u8 + T;
//
// let _ = (x as u8) < T;
//
// Without parens, the latter would want to parse `u8<T...` as a type.
next_operator_can_begin_generics: bool,
}
impl FixupContext {
/// The default amount of fixing is minimal fixing. Fixups should be turned
/// on in a targeted fashion where needed.
pub const NONE: Self = FixupContext {
#[cfg(feature = "full")]
previous_operator: Precedence::MIN,
#[cfg(feature = "full")]
next_operator: Precedence::MIN,
#[cfg(feature = "full")]
stmt: false,
#[cfg(feature = "full")]
leftmost_subexpression_in_stmt: false,
#[cfg(feature = "full")]
match_arm: false,
#[cfg(feature = "full")]
leftmost_subexpression_in_match_arm: false,
#[cfg(feature = "full")]
condition: false,
#[cfg(feature = "full")]
rightmost_subexpression_in_condition: false,
#[cfg(feature = "full")]
leftmost_subexpression_in_optional_operand: false,
#[cfg(feature = "full")]
next_operator_can_begin_expr: false,
#[cfg(feature = "full")]
next_operator_can_continue_expr: false,
next_operator_can_begin_generics: false,
};
/// Create the initial fixup for printing an expression in statement
/// position.
#[cfg(feature = "full")]
pub fn new_stmt() -> Self {
FixupContext {
stmt: true,
..FixupContext::NONE
}
}
/// Create the initial fixup for printing an expression as the right-hand
/// side of a match arm.
#[cfg(feature = "full")]
pub fn new_match_arm() -> Self {
FixupContext {
match_arm: true,
..FixupContext::NONE
}
}
/// Create the initial fixup for printing an expression as the "condition"
/// of an `if` or `while`. There are a few other positions which are
/// grammatically equivalent and also use this, such as the iterator
/// expression in `for` and the scrutinee in `match`.
#[cfg(feature = "full")]
pub fn new_condition() -> Self {
FixupContext {
condition: true,
rightmost_subexpression_in_condition: true,
..FixupContext::NONE
}
}
/// Transform this fixup into the one that should apply when printing the
/// leftmost subexpression of the current expression.
///
/// The leftmost subexpression is any subexpression that has the same first
/// token as the current expression, but has a different last token.
///
/// For example in `$a + $b` and `$a.method()`, the subexpression `$a` is a
/// leftmost subexpression.
///
/// Not every expression has a leftmost subexpression. For example neither
/// `-$a` nor `[$a]` have one.
pub fn leftmost_subexpression_with_operator(
self,
expr: &Expr,
#[cfg(feature = "full")] next_operator_can_begin_expr: bool,
next_operator_can_begin_generics: bool,
#[cfg(feature = "full")] precedence: Precedence,
) -> (Precedence, Self) {
let fixup = FixupContext {
#[cfg(feature = "full")]
next_operator: precedence,
#[cfg(feature = "full")]
stmt: false,
#[cfg(feature = "full")]
leftmost_subexpression_in_stmt: self.stmt || self.leftmost_subexpression_in_stmt,
#[cfg(feature = "full")]
match_arm: false,
#[cfg(feature = "full")]
leftmost_subexpression_in_match_arm: self.match_arm
|| self.leftmost_subexpression_in_match_arm,
#[cfg(feature = "full")]
rightmost_subexpression_in_condition: false,
#[cfg(feature = "full")]
next_operator_can_begin_expr,
#[cfg(feature = "full")]
next_operator_can_continue_expr: true,
next_operator_can_begin_generics,
..self
};
(fixup.leftmost_subexpression_precedence(expr), fixup)
}
/// Transform this fixup into the one that should apply when printing a
/// leftmost subexpression followed by a `.` or `?` token, which confer
/// different statement boundary rules compared to other leftmost
/// subexpressions.
pub fn leftmost_subexpression_with_dot(self, expr: &Expr) -> (Precedence, Self) {
let fixup = FixupContext {
#[cfg(feature = "full")]
next_operator: Precedence::Unambiguous,
#[cfg(feature = "full")]
stmt: self.stmt || self.leftmost_subexpression_in_stmt,
#[cfg(feature = "full")]
leftmost_subexpression_in_stmt: false,
#[cfg(feature = "full")]
match_arm: self.match_arm || self.leftmost_subexpression_in_match_arm,
#[cfg(feature = "full")]
leftmost_subexpression_in_match_arm: false,
#[cfg(feature = "full")]
rightmost_subexpression_in_condition: false,
#[cfg(feature = "full")]
next_operator_can_begin_expr: false,
#[cfg(feature = "full")]
next_operator_can_continue_expr: true,
next_operator_can_begin_generics: false,
..self
};
(fixup.leftmost_subexpression_precedence(expr), fixup)
}
fn leftmost_subexpression_precedence(self, expr: &Expr) -> Precedence {
#[cfg(feature = "full")]
if !self.next_operator_can_begin_expr || self.next_operator == Precedence::Range {
if let Scan::Bailout = scan_right(expr, self, false, 0, 0) {
if scan_left(expr, self) {
return Precedence::Unambiguous;
}
}
}
self.precedence(expr)
}
/// Transform this fixup into the one that should apply when printing the
/// rightmost subexpression of the current expression.
///
/// The rightmost subexpression is any subexpression that has a different
/// first token than the current expression, but has the same last token.
///
/// For example in `$a + $b` and `-$b`, the subexpression `$b` is a
/// rightmost subexpression.
///
/// Not every expression has a rightmost subexpression. For example neither
/// `[$b]` nor `$a.f($b)` have one.
pub fn rightmost_subexpression(
self,
expr: &Expr,
#[cfg(feature = "full")] precedence: Precedence,
) -> (Precedence, Self) {
let fixup = self.rightmost_subexpression_fixup(
#[cfg(feature = "full")]
false,
#[cfg(feature = "full")]
false,
#[cfg(feature = "full")]
precedence,
);
(fixup.rightmost_subexpression_precedence(expr), fixup)
}
pub fn rightmost_subexpression_fixup(
self,
#[cfg(feature = "full")] reset_allow_struct: bool,
#[cfg(feature = "full")] optional_operand: bool,
#[cfg(feature = "full")] precedence: Precedence,
) -> Self {
FixupContext {
#[cfg(feature = "full")]
previous_operator: precedence,
#[cfg(feature = "full")]
stmt: false,
#[cfg(feature = "full")]
leftmost_subexpression_in_stmt: false,
#[cfg(feature = "full")]
match_arm: false,
#[cfg(feature = "full")]
leftmost_subexpression_in_match_arm: false,
#[cfg(feature = "full")]
condition: self.condition && !reset_allow_struct,
#[cfg(feature = "full")]
leftmost_subexpression_in_optional_operand: self.condition && optional_operand,
..self
}
}
pub fn rightmost_subexpression_precedence(self, expr: &Expr) -> Precedence {
let default_prec = self.precedence(expr);
#[cfg(feature = "full")]
if default_prec < Precedence::Prefix
&& (!self.next_operator_can_begin_expr || self.next_operator == Precedence::Range)
{
if let Scan::Bailout | Scan::Fail = scan_right(
expr,
self,
self.previous_operator == Precedence::Range,
1,
0,
) {
if scan_left(expr, self) {
return Precedence::Prefix;
}
}
}
default_prec
}
/// Determine whether parentheses are needed around the given expression to
/// head off the early termination of a statement or condition.
#[cfg(feature = "full")]
pub fn parenthesize(self, expr: &Expr) -> bool {
(self.leftmost_subexpression_in_stmt && !classify::requires_semi_to_be_stmt(expr))
|| ((self.stmt || self.leftmost_subexpression_in_stmt) && matches!(expr, Expr::Let(_)))
|| (self.leftmost_subexpression_in_match_arm
&& !classify::requires_comma_to_be_match_arm(expr))
|| (self.condition && matches!(expr, Expr::Struct(_)))
|| (self.rightmost_subexpression_in_condition
&& matches!(
expr,
Expr::Return(ExprReturn { expr: None, .. })
| Expr::Yield(ExprYield { expr: None, .. })
))
|| (self.rightmost_subexpression_in_condition
&& !self.condition
&& matches!(
expr,
Expr::Break(ExprBreak { expr: None, .. })
| Expr::Path(_)
| Expr::Range(ExprRange { end: None, .. })
))
|| (self.leftmost_subexpression_in_optional_operand
&& matches!(expr, Expr::Block(expr) if expr.attrs.is_empty() && expr.label.is_none()))
}
/// Determines the effective precedence of a subexpression. Some expressions
/// have higher or lower precedence when adjacent to particular operators.
fn precedence(self, expr: &Expr) -> Precedence {
#[cfg(feature = "full")]
if self.next_operator_can_begin_expr {
// Decrease precedence of value-less jumps when followed by an
// operator that would otherwise get interpreted as beginning a
// value for the jump.
if let Expr::Break(ExprBreak { expr: None, .. })
| Expr::Return(ExprReturn { expr: None, .. })
| Expr::Yield(ExprYield { expr: None, .. }) = expr
{
return Precedence::Jump;
}
}
#[cfg(feature = "full")]
if !self.next_operator_can_continue_expr {
match expr {
// Increase precedence of expressions that extend to the end of
// current statement or group.
Expr::Break(_)
| Expr::Closure(_)
| Expr::Let(_)
| Expr::Return(_)
| Expr::Yield(_) => {
return Precedence::Prefix;
}
Expr::Range(e) if e.start.is_none() => return Precedence::Prefix,
_ => {}
}
}
if self.next_operator_can_begin_generics {
if let Expr::Cast(cast) = expr {
if classify::trailing_unparameterized_path(&cast.ty) {
return Precedence::MIN;
}
}
}
Precedence::of(expr)
}
}
impl Copy for FixupContext {}
impl Clone for FixupContext {
fn clone(&self) -> Self {
*self
}
}
#[cfg(feature = "full")]
enum Scan {
Fail,
Bailout,
Consume,
}
#[cfg(feature = "full")]
impl Copy for Scan {}
#[cfg(feature = "full")]
impl Clone for Scan {
fn clone(&self) -> Self {
*self
}
}
#[cfg(feature = "full")]
fn scan_left(expr: &Expr, fixup: FixupContext) -> bool {
match expr {
Expr::Assign(_) => fixup.previous_operator <= Precedence::Assign,
Expr::Binary(e) => match Precedence::of_binop(&e.op) {
Precedence::Assign => fixup.previous_operator <= Precedence::Assign,
binop_prec => fixup.previous_operator < binop_prec,
},
Expr::Range(e) => e.start.is_none() || fixup.previous_operator < Precedence::Assign,
_ => true,
}
}
#[cfg(feature = "full")]
fn scan_right(
expr: &Expr,
fixup: FixupContext,
range: bool,
fail_offset: u8,
bailout_offset: u8,
) -> Scan {
if fixup.parenthesize(expr) {
return Scan::Consume;
}
match expr {
Expr::Assign(e) => {
if match fixup.next_operator {
Precedence::Unambiguous => fail_offset >= 2,
_ => bailout_offset >= 1,
} {
return Scan::Consume;
}
let right_fixup = fixup.rightmost_subexpression_fixup(false, false, Precedence::Assign);
let scan = scan_right(
&e.right,
right_fixup,
false,
match fixup.next_operator {
Precedence::Unambiguous => fail_offset,
_ => 1,
},
1,
);
if let Scan::Bailout | Scan::Consume = scan {
return Scan::Consume;
}
if right_fixup.rightmost_subexpression_precedence(&e.right) < Precedence::Assign {
Scan::Consume
} else if let Precedence::Unambiguous = fixup.next_operator {
Scan::Fail
} else {
Scan::Bailout
}
}
Expr::Binary(e) => {
if match fixup.next_operator {
Precedence::Unambiguous => fail_offset >= 2,
_ => bailout_offset >= 1,
} {
return Scan::Consume;
}
let binop_prec = Precedence::of_binop(&e.op);
let right_fixup = fixup.rightmost_subexpression_fixup(false, false, binop_prec);
let scan = scan_right(
&e.right,
right_fixup,
range && binop_prec != Precedence::Assign,
match fixup.next_operator {
Precedence::Unambiguous => fail_offset,
_ => 1,
},
match (binop_prec, fixup.next_operator) {
(Precedence::Assign, _) => 1,
(_, Precedence::Assign | Precedence::Range) if range => 0,
_ => 1,
},
);
if match (scan, fixup.next_operator) {
(Scan::Fail, _) => false,
(Scan::Bailout, _) if binop_prec == Precedence::Assign => true,
(Scan::Bailout, Precedence::Assign | Precedence::Range) => !range,
(Scan::Bailout | Scan::Consume, _) => true,
} {
return Scan::Consume;
}
let right_prec = right_fixup.rightmost_subexpression_precedence(&e.right);
let right_needs_group = match binop_prec {
Precedence::Assign => right_prec < binop_prec,
_ => right_prec <= binop_prec,
};
if right_needs_group {
Scan::Consume
} else if let (Scan::Fail, Precedence::Unambiguous) = (scan, fixup.next_operator) {
Scan::Fail
} else {
Scan::Bailout
}
}
Expr::RawAddr(ExprRawAddr { expr, .. })
| Expr::Reference(ExprReference { expr, .. })
| Expr::Unary(ExprUnary { expr, .. }) => {
if match fixup.next_operator {
Precedence::Unambiguous => fail_offset >= 2,
_ => bailout_offset >= 1,
} {
return Scan::Consume;
}
let right_fixup = fixup.rightmost_subexpression_fixup(false, false, Precedence::Prefix);
let scan = scan_right(
expr,
right_fixup,
range,
match fixup.next_operator {
Precedence::Unambiguous => fail_offset,
_ => 1,
},
match fixup.next_operator {
Precedence::Assign | Precedence::Range if range => 0,
_ => 1,
},
);
if match (scan, fixup.next_operator) {
(Scan::Fail, _) => false,
(Scan::Bailout, Precedence::Assign | Precedence::Range) => !range,
(Scan::Bailout | Scan::Consume, _) => true,
} {
return Scan::Consume;
}
if right_fixup.rightmost_subexpression_precedence(expr) < Precedence::Prefix {
Scan::Consume
} else if let (Scan::Fail, Precedence::Unambiguous) = (scan, fixup.next_operator) {
Scan::Fail
} else {
Scan::Bailout
}
}
Expr::Range(e) => match &e.end {
Some(end) => {
if fail_offset >= 2 {
return Scan::Consume;
}
let right_fixup =
fixup.rightmost_subexpression_fixup(false, true, Precedence::Range);
let scan = scan_right(
end,
right_fixup,
true,
fail_offset,
match fixup.next_operator {
Precedence::Assign | Precedence::Range => 0,
_ => 1,
},
);
if match (scan, fixup.next_operator) {
(Scan::Fail, _) => false,
(Scan::Bailout, Precedence::Assign | Precedence::Range) => false,
(Scan::Bailout | Scan::Consume, _) => true,
} {
return Scan::Consume;
}
if right_fixup.rightmost_subexpression_precedence(end) <= Precedence::Range {
Scan::Consume
} else {
Scan::Fail
}
}
None => match fixup.next_operator {
Precedence::Range => Scan::Consume,
_ => Scan::Fail,
},
},
Expr::Break(e) => match &e.expr {
Some(value) => {
if bailout_offset >= 1 || e.label.is_none() && classify::expr_leading_label(value) {
return Scan::Consume;
}
let right_fixup = fixup.rightmost_subexpression_fixup(true, true, Precedence::Jump);
match scan_right(value, right_fixup, false, 1, 1) {
Scan::Fail => Scan::Bailout,
Scan::Bailout | Scan::Consume => Scan::Consume,
}
}
None => match fixup.next_operator {
Precedence::Assign if range => Scan::Fail,
_ => Scan::Consume,
},
},
Expr::Return(ExprReturn { expr, .. }) | Expr::Yield(ExprYield { expr, .. }) => match expr {
Some(e) => {
if bailout_offset >= 1 {
return Scan::Consume;
}
let right_fixup =
fixup.rightmost_subexpression_fixup(true, false, Precedence::Jump);
match scan_right(e, right_fixup, false, 1, 1) {
Scan::Fail => Scan::Bailout,
Scan::Bailout | Scan::Consume => Scan::Consume,
}
}
None => match fixup.next_operator {
Precedence::Assign if range => Scan::Fail,
_ => Scan::Consume,
},
},
Expr::Closure(e) => {
if matches!(e.output, ReturnType::Default)
|| matches!(&*e.body, Expr::Block(body) if body.attrs.is_empty() && body.label.is_none())
{
if bailout_offset >= 1 {
return Scan::Consume;
}
let right_fixup =
fixup.rightmost_subexpression_fixup(false, false, Precedence::Jump);
match scan_right(&e.body, right_fixup, false, 1, 1) {
Scan::Fail => Scan::Bailout,
Scan::Bailout | Scan::Consume => Scan::Consume,
}
} else {
Scan::Consume
}
}
Expr::Array(_)
| Expr::Async(_)
| Expr::Await(_)
| Expr::Block(_)
| Expr::Call(_)
| Expr::Cast(_)
| Expr::Const(_)
| Expr::Continue(_)
| Expr::Field(_)
| Expr::ForLoop(_)
| Expr::Group(_)
| Expr::If(_)
| Expr::Index(_)
| Expr::Infer(_)
| Expr::Let(_)
| Expr::Lit(_)
| Expr::Loop(_)
| Expr::Macro(_)
| Expr::Match(_)
| Expr::MethodCall(_)
| Expr::Paren(_)
| Expr::Path(_)
| Expr::Repeat(_)
| Expr::Struct(_)
| Expr::Try(_)
| Expr::TryBlock(_)
| Expr::Tuple(_)
| Expr::Unsafe(_)
| Expr::Verbatim(_)
| Expr::While(_) => match fixup.next_operator {
Precedence::Assign | Precedence::Range if range => Scan::Fail,
_ => Scan::Consume,
},
}
}