rune_alloc/ptr/
unique.rs

1use core::fmt;
2use core::marker::PhantomData;
3
4use crate::ptr::NonNull;
5
6/// A wrapper around a raw non-null `*mut T` that indicates that the possessor
7/// of this wrapper owns the referent. Useful for building abstractions like
8/// `Box<T>`, `Vec<T>`, `String`, and `HashMap<K, V>`.
9///
10/// Unlike `*mut T`, `Unique<T>` behaves "as if" it were an instance of `T`.
11/// It implements `Send`/`Sync` if `T` is `Send`/`Sync`. It also implies
12/// the kind of strong aliasing guarantees an instance of `T` can expect:
13/// the referent of the pointer should not be modified without a unique path to
14/// its owning Unique.
15///
16/// If you're uncertain of whether it's correct to use `Unique` for your purposes,
17/// consider using `NonNull`, which has weaker semantics.
18///
19/// Unlike `*mut T`, the pointer must always be non-null, even if the pointer
20/// is never dereferenced. This is so that enums may use this forbidden value
21/// as a discriminant -- `Option<Unique<T>>` has the same size as `Unique<T>`.
22/// However the pointer may still dangle if it isn't dereferenced.
23///
24/// Unlike `*mut T`, `Unique<T>` is covariant over `T`. This should always be correct
25/// for any type which upholds Unique's aliasing requirements.
26#[doc(hidden)]
27#[repr(transparent)]
28pub struct Unique<T: ?Sized> {
29    pointer: NonNull<T>,
30    // NOTE: this marker has no consequences for variance, but is necessary
31    // for dropck to understand that we logically own a `T`.
32    //
33    // For details, see:
34    // https://github.com/rust-lang/rfcs/blob/master/text/0769-sound-generic-drop.md#phantom-data
35    _marker: PhantomData<T>,
36}
37
38/// `Unique` pointers are `Send` if `T` is `Send` because the data they
39/// reference is unaliased. Note that this aliasing invariant is
40/// unenforced by the type system; the abstraction using the
41/// `Unique` must enforce it.
42unsafe impl<T: Send + ?Sized> Send for Unique<T> {}
43
44/// `Unique` pointers are `Sync` if `T` is `Sync` because the data they
45/// reference is unaliased. Note that this aliasing invariant is
46/// unenforced by the type system; the abstraction using the
47/// `Unique` must enforce it.
48unsafe impl<T: Sync + ?Sized> Sync for Unique<T> {}
49
50impl<T: Sized> Unique<T> {
51    /// Creates a new `Unique` that is dangling, but well-aligned.
52    ///
53    /// This is useful for initializing types which lazily allocate, like
54    /// `Vec::new` does.
55    ///
56    /// Note that the pointer value may potentially represent a valid pointer to
57    /// a `T`, which means this must not be used as a "not yet initialized"
58    /// sentinel value. Types that lazily allocate must track initialization by
59    /// some other means.
60    #[must_use]
61    #[inline]
62    pub const fn dangling() -> Self {
63        // FIXME(const-hack) replace with `From`
64        Unique {
65            pointer: NonNull::dangling(),
66            _marker: PhantomData,
67        }
68    }
69}
70
71impl<T> Unique<[T]> {
72    /// Unique pointer for an empty slice.
73    #[must_use]
74    #[inline]
75    pub(crate) fn dangling_empty_slice() -> Self {
76        let pointer = NonNull::<T>::dangling();
77
78        Unique {
79            pointer: NonNull::slice_from_raw_parts(pointer, 0),
80            _marker: PhantomData,
81        }
82    }
83}
84
85impl<T: ?Sized> Unique<T> {
86    /// Creates a new `Unique`.
87    ///
88    /// # Safety
89    ///
90    /// `ptr` must be non-null.
91    #[inline]
92    pub const unsafe fn new_unchecked(ptr: *mut T) -> Self {
93        // SAFETY: the caller must guarantee that `ptr` is non-null.
94        unsafe {
95            Unique {
96                pointer: NonNull::new_unchecked(ptr),
97                _marker: PhantomData,
98            }
99        }
100    }
101
102    /// Creates a new `Unique` if `ptr` is non-null.
103    #[inline]
104    pub fn new(ptr: *mut T) -> Option<Self> {
105        NonNull::new(ptr).map(|pointer| Unique {
106            pointer,
107            _marker: PhantomData,
108        })
109    }
110
111    /// Acquires the underlying `*mut` pointer.
112    #[must_use = "`self` will be dropped if the result is not used"]
113    #[inline]
114    pub const fn as_ptr(self) -> *mut T {
115        self.pointer.as_ptr()
116    }
117
118    /// Dereferences the content.
119    ///
120    /// The resulting lifetime is bound to self so this behaves "as if"
121    /// it were actually an instance of T that is getting borrowed. If a longer
122    /// (unbound) lifetime is needed, use `&*my_ptr.as_ptr()`.
123    #[must_use]
124    #[inline]
125    pub unsafe fn as_ref(&self) -> &T {
126        // SAFETY: the caller must guarantee that `self` meets all the
127        // requirements for a reference.
128        unsafe { self.pointer.as_ref() }
129    }
130
131    /// Mutably dereferences the content.
132    ///
133    /// The resulting lifetime is bound to self so this behaves "as if"
134    /// it were actually an instance of T that is getting borrowed. If a longer
135    /// (unbound) lifetime is needed, use `&mut *my_ptr.as_ptr()`.
136    #[must_use]
137    #[inline]
138    pub unsafe fn as_mut(&mut self) -> &mut T {
139        // SAFETY: the caller must guarantee that `self` meets all the
140        // requirements for a mutable reference.
141        unsafe { self.pointer.as_mut() }
142    }
143
144    /// Casts to a pointer of another type.
145    #[must_use = "`self` will be dropped if the result is not used"]
146    #[inline]
147    pub const fn cast<U>(self) -> Unique<U> {
148        // FIXME(const-hack): replace with `From`
149        // SAFETY: is `NonNull`
150        unsafe { Unique::new_unchecked(self.pointer.cast().as_ptr()) }
151    }
152}
153
154impl<T: ?Sized> Clone for Unique<T> {
155    #[inline]
156    fn clone(&self) -> Self {
157        *self
158    }
159}
160
161impl<T: ?Sized> Copy for Unique<T> {}
162
163impl<T: ?Sized> fmt::Debug for Unique<T> {
164    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
165        fmt::Pointer::fmt(&self.as_ptr(), f)
166    }
167}
168
169impl<T: ?Sized> fmt::Pointer for Unique<T> {
170    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
171        fmt::Pointer::fmt(&self.as_ptr(), f)
172    }
173}
174
175impl<T: ?Sized> From<&mut T> for Unique<T> {
176    /// Converts a `&mut T` to a `Unique<T>`.
177    ///
178    /// This conversion is infallible since references cannot be null.
179    #[inline]
180    fn from(reference: &mut T) -> Self {
181        Self::from(NonNull::from(reference))
182    }
183}
184
185impl<T: ?Sized> From<NonNull<T>> for Unique<T> {
186    /// Converts a `NonNull<T>` to a `Unique<T>`.
187    ///
188    /// This conversion is infallible since `NonNull` cannot be null.
189    #[inline]
190    fn from(pointer: NonNull<T>) -> Self {
191        Unique {
192            pointer,
193            _marker: PhantomData,
194        }
195    }
196}
197
198impl<T: ?Sized> From<Unique<T>> for NonNull<T> {
199    #[inline]
200    fn from(unique: Unique<T>) -> Self {
201        // SAFETY: A Unique pointer cannot be null, so the conditions for
202        // new_unchecked() are respected.
203        unsafe { NonNull::new_unchecked(unique.as_ptr()) }
204    }
205}