rune_alloc/string/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
//! A UTF-8–encoded, growable string.
//!
//! This module contains the [`String`] type, the [`TryToString`] trait for
//! converting to strings, and several error types that may result from working
//! with [`String`]s.
//!
//! # Examples
//!
//! There are multiple ways to create a new [`String`] from a string literal:
//!
//! ```
//! use rune::alloc::prelude::*;
//!
//! let s = "Hello".try_to_string()?;
//!
//! let s = String::try_from("world")?;
//! let s: String = "also this".try_into()?;
//! # Ok::<_, rune::alloc::Error>(())
//! ```
//!
//! If you have a vector of valid UTF-8 bytes, you can make a [`String`] out of
//! it. You can do the reverse too.
//!
//! ```
//! use rune::alloc::prelude::*;
//!
//! let sparkle_heart = try_vec![240, 159, 146, 150];
//! let sparkle_heart = String::from_utf8(sparkle_heart)?;
//!
//! assert_eq!("💖", sparkle_heart);
//!
//! let bytes = sparkle_heart.into_bytes();
//!
//! assert_eq!(bytes, [240, 159, 146, 150]);
//! # Ok::<_, std::boxed::Box<dyn core::error::Error>>(())
//! ```
#[cfg(feature = "serde")]
mod serde;
pub use self::try_to_string::TryToString;
pub(crate) mod try_to_string;
#[cfg(feature = "alloc")]
use core::alloc::Layout;
use core::borrow::Borrow;
use core::cmp::Ordering;
use core::fmt;
use core::hash;
use core::iter::FusedIterator;
#[cfg(feature = "alloc")]
use core::mem::ManuallyDrop;
use core::ops::Bound::{Excluded, Included, Unbounded};
use core::ops::{self, Index, IndexMut, Range, RangeBounds};
use core::ptr;
use core::slice;
use core::str::{from_utf8, from_utf8_unchecked, from_utf8_unchecked_mut};
use core::str::{Chars, Utf8Error};
use crate::alloc::{Allocator, Global};
use crate::borrow::Cow;
use crate::boxed::Box;
use crate::clone::TryClone;
use crate::error::Error;
use crate::fmt::TryWrite;
use crate::iter::{TryExtend, TryFromIteratorIn, TryJoin};
use crate::slice::range as slice_range;
#[cfg(test)]
use crate::testing::*;
use crate::vec::Vec;
/// A UTF-8–encoded, growable string.
///
/// The `String` type is the most common string type that has ownership over the
/// contents of the string. It has a close relationship with its borrowed
/// counterpart, the primitive [`str`].
///
/// # Examples
///
/// You can create a `String` from [a literal string][`&str`] with
/// [`String::try_from`]:
///
/// [`String::try_from`]: TryFrom::try_from
///
/// ```
/// use rune::alloc::String;
///
/// let hello = String::try_from("Hello, world!")?;
/// # Ok::<_, rune::alloc::Error>(())
/// ```
///
/// You can append a [`char`] to a `String` with the [`try_push`] method, and
/// append a [`&str`] with the [`try_push_str`] method:
///
/// ```
/// use rune::alloc::String;
///
/// let mut hello = String::try_from("Hello, ")?;
///
/// hello.try_push('w')?;
/// hello.try_push_str("orld!")?;
/// # Ok::<_, rune::alloc::Error>(())
/// ```
///
/// [`try_push`]: String::try_push
/// [`try_push_str`]: String::try_push_str
///
/// If you have a vector of UTF-8 bytes, you can create a `String` from it with
/// the [`from_utf8`] method:
///
/// ```
/// use rune::alloc::{try_vec, String};
///
/// // some bytes, in a vector
/// let sparkle_heart = try_vec![240, 159, 146, 150];
/// let sparkle_heart = String::from_utf8(sparkle_heart)?;
///
/// assert_eq!("💖", sparkle_heart);
/// # Ok::<_, Box<dyn core::error::Error>>(())
/// ```
///
/// [`from_utf8`]: String::from_utf8
///
/// # UTF-8
///
/// `String`s are always valid UTF-8. If you need a non-UTF-8 string, consider
/// [`OsString`]. It is similar, but without the UTF-8 constraint. Because UTF-8
/// is a variable width encoding, `String`s are typically smaller than an array of
/// the same `chars`:
///
/// ```
/// use core::mem;
///
/// // `s` is ASCII which represents each `char` as one byte
/// let s = "hello";
/// assert_eq!(s.len(), 5);
///
/// // A `char` array with the same contents would be longer because
/// // every `char` is four bytes
/// let s = ['h', 'e', 'l', 'l', 'o'];
/// let size: usize = s.into_iter().map(|c| mem::size_of_val(&c)).sum();
/// assert_eq!(size, 20);
///
/// // However, for non-ASCII strings, the difference will be smaller
/// // and sometimes they are the same
/// let s = "💖💖💖💖💖";
/// assert_eq!(s.len(), 20);
///
/// let s = ['💖', '💖', '💖', '💖', '💖'];
/// let size: usize = s.into_iter().map(|c| mem::size_of_val(&c)).sum();
/// assert_eq!(size, 20);
/// ```
///
/// This raises interesting questions as to how `s[i]` should work.
/// What should `i` be here? Several options include byte indices and
/// `char` indices but, because of UTF-8 encoding, only byte indices
/// would provide constant time indexing. Getting the `i`th `char`, for
/// example, is available using [`chars`]:
///
/// ```
/// let s = "hello";
/// let third_character = s.chars().nth(2);
/// assert_eq!(third_character, Some('l'));
///
/// let s = "💖💖💖💖💖";
/// let third_character = s.chars().nth(2);
/// assert_eq!(third_character, Some('💖'));
/// ```
///
/// Next, what should `s[i]` return? Because indexing returns a reference
/// to underlying data it could be `&u8`, `&[u8]`, or something else similar.
/// Since we're only providing one index, `&u8` makes the most sense but that
/// might not be what the user expects and can be explicitly achieved with
/// [`as_bytes()`]:
///
/// ```
/// // The first byte is 104 - the byte value of `'h'`
/// let s = "hello";
/// assert_eq!(s.as_bytes()[0], 104);
/// // or
/// assert_eq!(s.as_bytes()[0], b'h');
///
/// // The first byte is 240 which isn't obviously useful
/// let s = "💖💖💖💖💖";
/// assert_eq!(s.as_bytes()[0], 240);
/// ```
///
/// Due to these ambiguities/restrictions, indexing with a `usize` is simply
/// forbidden:
///
/// ```compile_fail,E0277
/// let s = "hello";
///
/// // The following will not compile!
/// println!("The first letter of s is {}", s[0]);
/// ```
///
/// It is more clear, however, how `&s[i..j]` should work (that is,
/// indexing with a range). It should accept byte indices (to be constant-time)
/// and return a `&str` which is UTF-8 encoded. This is also called "string slicing".
/// Note this will panic if the byte indices provided are not character
/// boundaries - see [`is_char_boundary`] for more details. See the implementations
/// for [`SliceIndex<str>`] for more details on string slicing. For a non-panicking
/// version of string slicing, see [`get`].
///
/// [`OsString`]: ../../std/ffi/struct.OsString.html "ffi::OsString"
/// [`SliceIndex<str>`]: core::slice::SliceIndex
/// [`as_bytes()`]: str::as_bytes
/// [`get`]: str::get
/// [`is_char_boundary`]: str::is_char_boundary
///
/// The [`bytes`] and [`chars`] methods return iterators over the bytes and
/// codepoints of the string, respectively. To iterate over codepoints along
/// with byte indices, use [`char_indices`].
///
/// [`bytes`]: str::bytes
/// [`chars`]: str::chars
/// [`char_indices`]: str::char_indices
///
/// # Deref
///
/// `String` implements <code>[Deref]<Target = [str]></code>, and so inherits all of [`str`]'s
/// methods. In addition, this means that you can pass a `String` to a
/// function which takes a [`&str`] by using an ampersand (`&`):
///
/// ```
/// use rune::alloc::String;
///
/// fn takes_str(s: &str) { }
///
/// let s = String::try_from("Hello")?;
///
/// takes_str(&s);
/// # Ok::<_, rune::alloc::Error>(())
/// ```
///
/// This will create a [`&str`] from the `String` and pass it in. This
/// conversion is very inexpensive, and so generally, functions will accept
/// [`&str`]s as arguments unless they need a `String` for some specific
/// reason.
///
/// In certain cases Rust doesn't have enough information to make this
/// conversion, known as [`Deref`] coercion. In the following example a string
/// slice [`&'a str`][`&str`] implements the trait `TraitExample`, and the function
/// `example_func` takes anything that implements the trait. In this case Rust
/// would need to make two implicit conversions, which Rust doesn't have the
/// means to do. For that reason, the following example will not compile.
///
/// ```compile_fail,E0277
/// use rune::alloc::String;
///
/// trait TraitExample {}
///
/// impl<'a> TraitExample for &'a str {}
///
/// fn example_func<A: TraitExample>(example_arg: A) {}
///
/// let example_string = String::try_from("example_string")?;
/// example_func(&example_string);
/// # Ok::<_, rune::alloc::Error>(())
/// ```
///
/// There are two options that would work instead. The first would be to
/// change the line `example_func(&example_string);` to
/// `example_func(example_string.as_str());`, using the method [`as_str()`]
/// to explicitly extract the string slice containing the string. The second
/// way changes `example_func(&example_string);` to
/// `example_func(&*example_string);`. In this case we are dereferencing a
/// `String` to a [`str`], then referencing the [`str`] back to
/// [`&str`]. The second way is more idiomatic, however both work to do the
/// conversion explicitly rather than relying on the implicit conversion.
///
/// # Representation
///
/// A `String` is made up of three components: a pointer to some bytes, a
/// length, and a capacity. The pointer points to an internal buffer `String`
/// uses to store its data. The length is the number of bytes currently stored
/// in the buffer, and the capacity is the size of the buffer in bytes. As such,
/// the length will always be less than or equal to the capacity.
///
/// This buffer is always stored on the heap.
///
/// You can look at these with the [`as_ptr`], [`len`], and [`capacity`]
/// methods:
///
/// ```
/// use core::mem;
/// use rune::alloc::String;
///
/// let story = String::try_from("Once upon a time...")?;
///
/// // Prevent automatically dropping the String's data
/// let mut story = mem::ManuallyDrop::new(story);
///
/// let ptr = story.as_mut_ptr();
/// let len = story.len();
/// let capacity = story.capacity();
/// let allocator = story.allocator().clone();
///
/// // story has nineteen bytes
/// assert_eq!(19, len);
///
/// // We can re-build a String out of ptr, len, and capacity. This is all
/// // unsafe because we are responsible for making sure the components are
/// // valid:
/// let s = unsafe { String::from_raw_parts_in(ptr, len, capacity, allocator) } ;
///
/// assert_eq!("Once upon a time...", s);
/// # Ok::<_, rune::alloc::Error>(())
/// ```
///
/// [`as_ptr`]: str::as_ptr
/// [`len`]: String::len
/// [`capacity`]: String::capacity
///
/// If a `String` has enough capacity, adding elements to it will not
/// re-allocate. For example, consider this program:
///
/// ```
/// use rune::alloc::String;
///
/// let mut s = String::new();
///
/// println!("{}", s.capacity());
///
/// for _ in 0..5 {
/// s.try_push_str("hello")?;
/// println!("{}", s.capacity());
/// }
/// # Ok::<_, rune::alloc::Error>(())
/// ```
///
/// This will output the following:
///
/// ```text
/// 0
/// 8
/// 16
/// 16
/// 32
/// 32
/// ```
///
/// At first, we have no memory allocated at all, but as we append to the
/// string, it increases its capacity appropriately. If we instead use the
/// [`try_with_capacity_in`] method to allocate the correct capacity initially:
///
/// ```
/// use rune::alloc::String;
/// use rune::alloc::alloc::Global;
///
/// let mut s = String::try_with_capacity_in(25, Global)?;
///
/// println!("{}", s.capacity());
///
/// for _ in 0..5 {
/// s.try_push_str("hello")?;
/// println!("{}", s.capacity());
/// }
/// # Ok::<_, rune::alloc::Error>(())
/// ```
///
/// [`try_with_capacity_in`]: String::try_with_capacity_in
///
/// We end up with a different output:
///
/// ```text
/// 25
/// 25
/// 25
/// 25
/// 25
/// 25
/// ```
///
/// Here, there's no need to allocate more memory inside the loop.
///
/// [str]: prim@str "str"
/// [`str`]: prim@str "str"
/// [`&str`]: prim@str "&str"
/// [Deref]: core::ops::Deref "ops::Deref"
/// [`Deref`]: core::ops::Deref "ops::Deref"
/// [`as_str()`]: String::as_str
pub struct String<A: Allocator = Global> {
vec: Vec<u8, A>,
}
impl String {
/// Creates a new empty `String`.
///
/// Given that the `String` is empty, this will not allocate any initial
/// buffer. While that means that this initial operation is very
/// inexpensive, it may cause excessive allocation later when you add data.
/// If you have an idea of how much data the `String` will hold, consider
/// the [`try_with_capacity`] method to prevent excessive re-allocation.
///
/// [`try_with_capacity`]: String::try_with_capacity
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use rune::alloc::String;
///
/// let s = String::new();
/// ```
#[inline]
#[must_use]
pub const fn new() -> Self {
String { vec: Vec::new() }
}
/// Creates a new empty `String` with at least the specified capacity.
///
/// `String`s have an internal buffer to hold their data. The capacity is
/// the length of that buffer, and can be queried with the [`capacity`]
/// method. This method creates an empty `String`, but one with an initial
/// buffer that can hold at least `capacity` bytes. This is useful when you
/// may be appending a bunch of data to the `String`, reducing the number of
/// reallocations it needs to do.
///
/// [`capacity`]: String::capacity
///
/// If the given capacity is `0`, no allocation will occur, and this method
/// is identical to the [`new`] method.
///
/// [`new`]: String::new
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use rune::alloc::String;
///
/// let mut s = String::try_with_capacity(10)?;
///
/// // The String contains no chars, even though it has capacity for more
/// assert_eq!(s.len(), 0);
///
/// // These are all done without reallocating...
/// let cap = s.capacity();
///
/// for _ in 0..10 {
/// s.try_push('a')?;
/// }
///
/// assert_eq!(s.capacity(), cap);
///
/// // ...but this may make the string reallocate
/// s.try_push('a')?;
/// # Ok::<_, rune::alloc::Error>(())
/// ```
#[inline]
pub fn try_with_capacity(capacity: usize) -> Result<Self, Error> {
Ok(String {
vec: Vec::try_with_capacity_in(capacity, Global)?,
})
}
/// Convert a [`String`] into a std `String`.
///
/// The result is allocated on the heap, using the default global allocator
/// so this is a zero-copy operation.
///
/// The memory previously occupied by this vector will be released.
#[cfg(feature = "alloc")]
pub fn into_std(self) -> ::rust_alloc::string::String {
// SAFETY: The interior vector is valid UTF-8.
unsafe { ::rust_alloc::string::String::from_utf8_unchecked(self.vec.into_std()) }
}
#[cfg(test)]
pub fn from(value: &str) -> Self {
Self::try_from(value).abort()
}
}
/// A possible error value when converting a `String` from a UTF-8 byte vector.
///
/// This type is the error type for the [`from_utf8`] method on [`String`]. It
/// is designed in such a way to carefully avoid reallocations: the
/// [`into_bytes`] method will give back the byte vector that was used in the
/// conversion attempt.
///
/// [`from_utf8`]: String::from_utf8
/// [`into_bytes`]: FromUtf8Error::into_bytes
///
/// The [`Utf8Error`] type provided by [`std::str`] represents an error that may
/// occur when converting a slice of [`u8`]s to a [`&str`]. In this sense, it's
/// an analogue to `FromUtf8Error`, and you can get one from a `FromUtf8Error`
/// through the [`utf8_error`] method.
///
/// [`Utf8Error`]: core::str::Utf8Error "std::str::Utf8Error"
/// [`std::str`]: core::str "std::str"
/// [`&str`]: prim@str "&str"
/// [`utf8_error`]: FromUtf8Error::utf8_error
///
/// # Examples
///
/// ```
/// use rune::alloc::{try_vec, String};
///
/// // some invalid bytes, in a vector
/// let bytes = try_vec![0, 159];
///
/// let value = String::from_utf8(bytes);
///
/// assert!(value.is_err());
/// assert_eq!(try_vec![0, 159], value.unwrap_err().into_bytes());
/// # Ok::<_, rune::alloc::Error>(())
/// ```
pub struct FromUtf8Error<A: Allocator = Global> {
bytes: Vec<u8, A>,
error: Utf8Error,
}
impl<A: Allocator> fmt::Debug for FromUtf8Error<A> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("FromUtf8Error")
.field("bytes", &self.bytes)
.field("error", &self.error)
.finish()
}
}
impl<A: Allocator> PartialEq for FromUtf8Error<A> {
fn eq(&self, other: &Self) -> bool {
self.bytes == other.bytes && self.error == other.error
}
}
impl<A: Allocator> Eq for FromUtf8Error<A> {}
impl<A: Allocator> String<A> {
/// Creates a new empty `String`.
///
/// Given that the `String` is empty, this will not allocate any initial
/// buffer. While that means that this initial operation is very
/// inexpensive, it may cause excessive allocation later when you add data.
/// If you have an idea of how much data the `String` will hold, consider
/// the [`try_with_capacity_in`] method to prevent excessive re-allocation.
///
/// [`try_with_capacity_in`]: String::try_with_capacity_in
///
/// # Examples
///
/// ```
/// use rune::alloc::String;
/// use rune::alloc::alloc::Global;
///
/// let s = String::new_in(Global);
/// ```
#[inline]
#[must_use]
pub fn new_in(alloc: A) -> String<A> {
String {
vec: Vec::new_in(alloc),
}
}
/// Returns a reference to the underlying allocator.
///
/// # Examples
///
/// ```
/// use rune::alloc::String;
/// use rune::alloc::alloc::Global;
///
/// let s = String::new_in(Global);
/// let alloc: &Global = s.allocator();
/// ```
#[inline]
pub fn allocator(&self) -> &A {
self.vec.allocator()
}
/// Creates a new empty `String` with at least the specified capacity.
///
/// `String`s have an internal buffer to hold their data. The capacity is
/// the length of that buffer, and can be queried with the [`capacity`]
/// method. This method creates an empty `String`, but one with an initial
/// buffer that can hold at least `capacity` bytes. This is useful when you
/// may be appending a bunch of data to the `String`, reducing the number of
/// reallocations it needs to do.
///
/// [`capacity`]: String::capacity
///
/// If the given capacity is `0`, no allocation will occur, and this method
/// is identical to the [`new_in`] method.
///
/// [`new_in`]: String::new_in
///
/// # Examples
///
/// ```
/// use rune::alloc::String;
/// use rune::alloc::alloc::Global;
///
/// let mut s = String::try_with_capacity_in(10, Global)?;
///
/// // The String contains no chars, even though it has capacity for more
/// assert_eq!(s.len(), 0);
///
/// // These are all done without reallocating...
/// let cap = s.capacity();
///
/// for _ in 0..10 {
/// s.try_push('a')?;
/// }
///
/// assert_eq!(s.capacity(), cap);
///
/// // ...but this may make the string reallocate
/// s.try_push('a')?;
/// # Ok::<_, rune::alloc::Error>(())
/// ```
#[inline]
pub fn try_with_capacity_in(capacity: usize, alloc: A) -> Result<String<A>, Error> {
Ok(String {
vec: Vec::try_with_capacity_in(capacity, alloc)?,
})
}
/// Converts a vector of bytes to a `String`.
///
/// A string ([`String`]) is made of bytes ([`u8`]), and a vector of bytes
/// ([`Vec<u8>`]) is made of bytes, so this function converts between the
/// two. Not all byte slices are valid `String`s, however: `String` requires
/// that it is valid UTF-8. `from_utf8()` checks to ensure that the bytes
/// are valid UTF-8, and then does the conversion.
///
/// If you are sure that the byte slice is valid UTF-8, and you don't want
/// to incur the overhead of the validity check, there is an unsafe version
/// of this function, [`from_utf8_unchecked`], which has the same behavior
/// but skips the check.
///
/// This method will take care to not copy the vector, for efficiency's
/// sake.
///
/// If you need a [`&str`] instead of a `String`, consider
/// [`str::from_utf8`].
///
/// The inverse of this method is [`into_bytes`].
///
/// [`str::from_utf8`]: core::str::from_utf8
///
/// # Errors
///
/// Returns [`Err`] if the slice is not UTF-8 with a description as to why
/// the provided bytes are not UTF-8. The vector you moved in is also
/// included.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use rune::alloc::{try_vec, String};
///
/// // some bytes, in a vector
/// let sparkle_heart = try_vec![240, 159, 146, 150];
/// let sparkle_heart = String::from_utf8(sparkle_heart)?;
///
/// assert_eq!("💖", sparkle_heart);
/// # Ok::<_, Box<dyn core::error::Error>>(())
/// ```
///
/// Incorrect bytes:
///
/// ```
/// use rune::alloc::{try_vec, String};
///
/// // some invalid bytes, in a vector
/// let sparkle_heart = try_vec![0, 159, 146, 150];
///
/// assert!(String::from_utf8(sparkle_heart).is_err());
/// # Ok::<_, rune::alloc::Error>(())
/// ```
///
/// See the docs for [`FromUtf8Error`] for more details on what you can do
/// with this error.
///
/// [`from_utf8_unchecked`]: String::from_utf8_unchecked
/// [`Vec<u8>`]: crate::vec::Vec "Vec"
/// [`&str`]: prim@str "&str"
/// [`into_bytes`]: String::into_bytes
#[inline]
pub fn from_utf8(vec: Vec<u8, A>) -> Result<String<A>, FromUtf8Error<A>> {
match from_utf8(&vec) {
Ok(..) => Ok(String { vec }),
Err(e) => Err(FromUtf8Error {
bytes: vec,
error: e,
}),
}
}
/// Creates a new `String` from a length, capacity, and pointer.
///
/// # Safety
///
/// This is highly unsafe, due to the number of invariants that aren't
/// checked:
///
/// * The memory at `buf` needs to have been previously allocated by the
/// same allocator the standard library uses, with a required alignment of exactly 1.
/// * `length` needs to be less than or equal to `capacity`.
/// * `capacity` needs to be the correct value.
/// * The first `length` bytes at `buf` need to be valid UTF-8.
///
/// Violating these may cause problems like corrupting the allocator's
/// internal data structures. For example, it is normally **not** safe to
/// build a `String` from a pointer to a C `char` array containing UTF-8
/// _unless_ you are certain that array was originally allocated by the
/// Rust standard library's allocator.
///
/// The ownership of `buf` is effectively transferred to the
/// `String` which may then deallocate, reallocate or change the
/// contents of memory pointed to by the pointer at will. Ensure
/// that nothing else uses the pointer after calling this
/// function.
///
/// # Examples
///
/// ```
/// use rune::alloc::String;
/// use core::mem;
///
/// unsafe {
/// let s = String::try_from("hello")?;
///
/// // Prevent automatically dropping the String's data
/// let mut s = mem::ManuallyDrop::new(s);
///
/// let ptr = s.as_mut_ptr();
/// let len = s.len();
/// let capacity = s.capacity();
/// let allocator = s.allocator().clone();
///
/// let s = String::from_raw_parts_in(ptr, len, capacity, allocator);
///
/// assert_eq!("hello", s);
/// }
/// # Ok::<_, rune::alloc::Error>(())
/// ```
#[inline]
pub unsafe fn from_raw_parts_in(
buf: *mut u8,
length: usize,
capacity: usize,
alloc: A,
) -> String<A> {
unsafe {
String {
vec: Vec::from_raw_parts_in(buf, length, capacity, alloc),
}
}
}
/// Converts a vector of bytes to a `String` without checking that the
/// string contains valid UTF-8.
///
/// See the safe version, [`from_utf8`], for more details.
///
/// [`from_utf8`]: String::from_utf8
///
/// # Safety
///
/// This function is unsafe because it does not check that the bytes passed
/// to it are valid UTF-8. If this constraint is violated, it may cause
/// memory unsafety issues with future users of the `String`, as the rest of
/// the standard library assumes that `String`s are valid UTF-8.
///
/// # Examples
///
/// ```
/// use rune::alloc::{try_vec, String};
///
/// // some bytes, in a vector
/// let sparkle_heart = try_vec![240, 159, 146, 150];
///
/// let sparkle_heart = unsafe {
/// String::from_utf8_unchecked(sparkle_heart)
/// };
///
/// assert_eq!("💖", sparkle_heart);
/// # Ok::<_, rune::alloc::Error>(())
/// ```
#[inline]
#[must_use]
pub unsafe fn from_utf8_unchecked(bytes: Vec<u8, A>) -> String<A> {
String { vec: bytes }
}
/// Converts a `String` into a byte vector.
///
/// This consumes the `String`, so we do not need to copy its contents.
///
/// # Examples
///
/// ```
/// use rune::alloc::String;
///
/// let s = String::try_from("hello")?;
/// let bytes = s.into_bytes();
///
/// assert_eq!(&[104, 101, 108, 108, 111][..], &bytes[..]);
/// # Ok::<_, rune::alloc::Error>(())
/// ```
#[inline]
#[must_use = "`self` will be dropped if the result is not used"]
pub fn into_bytes(self) -> Vec<u8, A> {
self.vec
}
/// Extracts a string slice containing the entire `String`.
///
/// # Examples
///
/// ```
/// use rune::alloc::String;
///
/// let s = String::try_from("foo")?;
///
/// assert_eq!("foo", s.as_str());
/// # Ok::<_, rune::alloc::Error>(())
/// ```
#[inline]
#[must_use]
pub fn as_str(&self) -> &str {
self
}
/// Converts a `String` into a mutable string slice.
///
/// # Examples
///
/// ```
/// use rune::alloc::String;
///
/// let mut s = String::try_from("foobar")?;
/// let s_mut_str = s.as_mut_str();
///
/// s_mut_str.make_ascii_uppercase();
///
/// assert_eq!("FOOBAR", s_mut_str);
/// # Ok::<_, rune::alloc::Error>(())
/// ```
#[inline]
#[must_use]
pub fn as_mut_str(&mut self) -> &mut str {
self
}
/// Appends a given string slice onto the end of this `String`.
///
/// # Examples
///
/// ```
/// use rune::alloc::String;
/// use rune::alloc::alloc::Global;
///
/// let mut s = String::try_with_capacity_in(3, Global)?;
///
/// s.try_push_str("foo")?;
/// s.try_push_str("bar")?;
///
/// assert_eq!("foobar", s);
/// # Ok::<_, rune::alloc::Error>(())
/// ```
#[inline]
pub fn try_push_str(&mut self, string: &str) -> Result<(), Error> {
self.vec.try_extend_from_slice(string.as_bytes())
}
#[cfg(test)]
pub(crate) fn push_str(&mut self, string: &str) {
self.try_push_str(string).abort()
}
/// Returns this `String`'s capacity, in bytes.
///
/// # Examples
///
/// ```
/// use rune::alloc::String;
/// use rune::alloc::alloc::Global;
///
/// let s = String::try_with_capacity_in(10, Global)?;
///
/// assert!(s.capacity() >= 10);
/// # Ok::<_, rune::alloc::Error>(())
/// ```
#[inline]
#[must_use]
pub fn capacity(&self) -> usize {
self.vec.capacity()
}
/// Tries to reserve capacity for at least `additional` bytes more than the
/// current length. The allocator may reserve more space to speculatively
/// avoid frequent allocations. After calling `try_reserve`, capacity will be
/// greater than or equal to `self.len() + additional` if it returns
/// `Ok(())`. Does nothing if capacity is already sufficient. This method
/// preserves the contents even if an error occurs.
///
/// # Errors
///
/// If the capacity overflows, or the allocator reports a failure, then an error
/// is returned.
///
/// # Examples
///
/// ```
/// use rune::alloc::{String, Error};
///
/// fn process_data(data: &str) -> Result<String, Error> {
/// let mut output = String::new();
///
/// // Pre-reserve the memory, exiting if we can't
/// output.try_reserve(data.len())?;
///
/// // Now we know this can't OOM in the middle of our complex work
/// output.try_push_str(data)?;
///
/// Ok(output)
/// }
/// # process_data("rust").expect("why is the test harness OOMing on 4 bytes?");
/// ```
pub fn try_reserve(&mut self, additional: usize) -> Result<(), Error> {
self.vec.try_reserve(additional)
}
/// Tries to reserve the minimum capacity for at least `additional` bytes
/// more than the current length. Unlike [`try_reserve`], this will not
/// deliberately over-allocate to speculatively avoid frequent allocations.
/// After calling `try_reserve_exact`, capacity will be greater than or
/// equal to `self.len() + additional` if it returns `Ok(())`.
/// Does nothing if the capacity is already sufficient.
///
/// Note that the allocator may give the collection more space than it
/// requests. Therefore, capacity can not be relied upon to be precisely
/// minimal. Prefer [`try_reserve`] if future insertions are expected.
///
/// [`try_reserve`]: String::try_reserve
///
/// # Errors
///
/// If the capacity overflows, or the allocator reports a failure, then an error
/// is returned.
///
/// # Examples
///
/// ```
/// use rune::alloc::{String, Error};
///
/// fn process_data(data: &str) -> Result<String, Error> {
/// let mut output = String::new();
///
/// // Pre-reserve the memory, exiting if we can't
/// output.try_reserve_exact(data.len())?;
///
/// // Now we know this can't OOM in the middle of our complex work
/// output.try_push_str(data);
///
/// Ok(output)
/// }
/// # process_data("rust").expect("why is the test harness OOMing on 4 bytes?");
/// ```
pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), Error> {
self.vec.try_reserve_exact(additional)
}
/// Shrinks the capacity of this `String` to match its length.
///
/// # Examples
///
/// ```
/// use rune::alloc::String;
/// let mut s = String::try_from("foo")?;
///
/// s.try_reserve(100)?;
/// assert!(s.capacity() >= 100);
///
/// s.try_shrink_to_fit()?;
/// assert_eq!(3, s.capacity());
/// # Ok::<_, rune::alloc::Error>(())
/// ```
#[inline]
pub fn try_shrink_to_fit(&mut self) -> Result<(), Error> {
self.vec.try_shrink_to_fit()
}
/// Shrinks the capacity of this `String` with a lower bound.
///
/// The capacity will remain at least as large as both the length
/// and the supplied value.
///
/// If the current capacity is less than the lower limit, this is a no-op.
///
/// # Examples
///
/// ```
/// use rune::alloc::String;
///
/// let mut s = String::try_from("foo")?;
///
/// s.try_reserve(100)?;
/// assert!(s.capacity() >= 100);
///
/// s.try_shrink_to(10)?;
/// assert!(s.capacity() >= 10);
/// s.try_shrink_to(0)?;
/// assert!(s.capacity() >= 3);
/// # Ok::<_, rune::alloc::Error>(())
/// ```
#[inline]
pub fn try_shrink_to(&mut self, min_capacity: usize) -> Result<(), Error> {
self.vec.try_shrink_to(min_capacity)
}
/// Appends the given [`char`] to the end of this `String`.
///
/// # Examples
///
/// ```
/// use rune::alloc::String;
/// use rune::alloc::alloc::Global;
///
/// let mut s = String::try_with_capacity_in(3, Global)?;
/// s.try_push_str("abc")?;
///
/// s.try_push('1')?;
/// s.try_push('2')?;
/// s.try_push('3')?;
///
/// assert_eq!("abc123", s);
/// # Ok::<_, rune::alloc::Error>(())
/// ```
#[inline]
pub fn try_push(&mut self, ch: char) -> Result<(), Error> {
match ch.len_utf8() {
1 => self.vec.try_push(ch as u8),
_ => self
.vec
.try_extend_from_slice(ch.encode_utf8(&mut [0; 4]).as_bytes()),
}
}
/// Returns a byte slice of this `String`'s contents.
///
/// The inverse of this method is [`from_utf8`].
///
/// [`from_utf8`]: String::from_utf8
///
/// # Examples
///
/// ```
/// use rune::alloc::String;
///
/// let s = String::try_from("hello")?;
///
/// assert_eq!(&[104, 101, 108, 108, 111], s.as_bytes());
/// # Ok::<_, rune::alloc::Error>(())
/// ```
#[inline]
#[must_use]
pub fn as_bytes(&self) -> &[u8] {
&self.vec
}
/// Shortens this `String` to the specified length.
///
/// If `new_len` is greater than the string's current length, this has no
/// effect.
///
/// Note that this method has no effect on the allocated capacity
/// of the string
///
/// # Panics
///
/// Panics if `new_len` does not lie on a [`char`] boundary.
///
/// # Examples
///
/// ```
/// use rune::alloc::String;
///
/// let mut s = String::try_from("hello")?;
///
/// s.truncate(2);
///
/// assert_eq!("he", s);
/// # Ok::<_, rune::alloc::Error>(())
/// ```
#[inline]
pub fn truncate(&mut self, new_len: usize) {
if new_len <= self.len() {
assert!(self.is_char_boundary(new_len));
self.vec.truncate(new_len)
}
}
/// Removes the last character from the string buffer and returns it.
///
/// Returns [`None`] if this `String` is empty.
///
/// # Examples
///
/// ```
/// use rune::alloc::String;
///
/// let mut s = String::try_from("abč")?;
///
/// assert_eq!(s.pop(), Some('č'));
/// assert_eq!(s.pop(), Some('b'));
/// assert_eq!(s.pop(), Some('a'));
///
/// assert_eq!(s.pop(), None);
/// # Ok::<_, rune::alloc::Error>(())
/// ```
#[inline]
pub fn pop(&mut self) -> Option<char> {
let ch = self.chars().next_back()?;
let newlen = self.len() - ch.len_utf8();
unsafe {
self.vec.set_len(newlen);
}
Some(ch)
}
/// Removes a [`char`] from this `String` at a byte position and returns it.
///
/// This is an *O*(*n*) operation, as it requires copying every element in the
/// buffer.
///
/// # Panics
///
/// Panics if `idx` is larger than or equal to the `String`'s length,
/// or if it does not lie on a [`char`] boundary.
///
/// # Examples
///
/// ```
/// use rune::alloc::String;
///
/// let mut s = String::try_from("abç")?;
///
/// assert_eq!(s.remove(0), 'a');
/// assert_eq!(s.remove(1), 'ç');
/// assert_eq!(s.remove(0), 'b');
/// # Ok::<_, rune::alloc::Error>(())
/// ```
#[inline]
pub fn remove(&mut self, idx: usize) -> char {
let ch = match self[idx..].chars().next() {
Some(ch) => ch,
None => panic!("cannot remove a char from the end of a string"),
};
let next = idx + ch.len_utf8();
let len = self.len();
unsafe {
ptr::copy(
self.vec.as_ptr().add(next),
self.vec.as_mut_ptr().add(idx),
len - next,
);
self.vec.set_len(len - (next - idx));
}
ch
}
/// Retains only the characters specified by the predicate.
///
/// In other words, remove all characters `c` such that `f(c)` returns `false`.
/// This method operates in place, visiting each character exactly once in the
/// original order, and preserves the order of the retained characters.
///
/// # Examples
///
/// ```
/// use rune::alloc::String;
///
/// let mut s = String::try_from("f_o_ob_ar")?;
///
/// s.retain(|c| c != '_');
///
/// assert_eq!(s, "foobar");
/// # Ok::<_, rune::alloc::Error>(())
/// ```
///
/// Because the elements are visited exactly once in the original order,
/// external state may be used to decide which elements to keep.
///
/// ```
/// use rune::alloc::String;
///
/// let mut s = String::try_from("abcde")?;
/// let keep = [false, true, true, false, true];
/// let mut iter = keep.iter();
/// s.retain(|_| *iter.next().unwrap());
/// assert_eq!(s, "bce");
/// # Ok::<_, rune::alloc::Error>(())
/// ```
#[inline]
pub fn retain<F>(&mut self, mut f: F)
where
F: FnMut(char) -> bool,
{
struct SetLenOnDrop<'a, A: Allocator> {
s: &'a mut String<A>,
idx: usize,
del_bytes: usize,
}
impl<'a, A: Allocator> Drop for SetLenOnDrop<'a, A> {
fn drop(&mut self) {
let new_len = self.idx - self.del_bytes;
debug_assert!(new_len <= self.s.len());
unsafe { self.s.vec.set_len(new_len) };
}
}
let len = self.len();
let mut guard = SetLenOnDrop {
s: self,
idx: 0,
del_bytes: 0,
};
while guard.idx < len {
let ch =
// SAFETY: `guard.idx` is positive-or-zero and less that len so the `get_unchecked`
// is in bound. `self` is valid UTF-8 like string and the returned slice starts at
// a unicode code point so the `Chars` always return one character.
unsafe { guard.s.get_unchecked(guard.idx..len).chars().next().unwrap_unchecked() };
let ch_len = ch.len_utf8();
if !f(ch) {
guard.del_bytes += ch_len;
} else if guard.del_bytes > 0 {
// SAFETY: `guard.idx` is in bound and `guard.del_bytes` represent the number of
// bytes that are erased from the string so the resulting `guard.idx -
// guard.del_bytes` always represent a valid unicode code point.
//
// `guard.del_bytes` >= `ch.len_utf8()`, so taking a slice with `ch.len_utf8()` len
// is safe.
ch.encode_utf8(unsafe {
slice::from_raw_parts_mut(
guard.s.as_mut_ptr().add(guard.idx - guard.del_bytes),
ch.len_utf8(),
)
});
}
// Point idx to the next char
guard.idx += ch_len;
}
drop(guard);
}
/// Inserts a character into this `String` at a byte position.
///
/// This is an *O*(*n*) operation as it requires copying every element in the
/// buffer.
///
/// # Panics
///
/// Panics if `idx` is larger than the `String`'s length, or if it does not
/// lie on a [`char`] boundary.
///
/// # Examples
///
/// ```
/// use rune::alloc::String;
/// use rune::alloc::alloc::Global;
///
/// let mut s = String::try_with_capacity_in(3, Global)?;
///
/// s.try_insert(0, 'f')?;
/// s.try_insert(1, 'o')?;
/// s.try_insert(2, 'o')?;
///
/// assert_eq!(s, "foo");
/// # Ok::<_, rune::alloc::Error>(())
/// ```
#[inline]
pub fn try_insert(&mut self, idx: usize, ch: char) -> Result<(), Error> {
assert!(self.is_char_boundary(idx));
let mut bits = [0; 4];
let bits = ch.encode_utf8(&mut bits).as_bytes();
unsafe {
self.insert_bytes(idx, bits)?;
}
Ok(())
}
unsafe fn insert_bytes(&mut self, idx: usize, bytes: &[u8]) -> Result<(), Error> {
let len = self.len();
let amt = bytes.len();
self.vec.try_reserve(amt)?;
unsafe {
ptr::copy(
self.vec.as_ptr().add(idx),
self.vec.as_mut_ptr().add(idx + amt),
len - idx,
);
ptr::copy_nonoverlapping(bytes.as_ptr(), self.vec.as_mut_ptr().add(idx), amt);
self.vec.set_len(len + amt);
}
Ok(())
}
/// Inserts a string slice into this `String` at a byte position.
///
/// This is an *O*(*n*) operation as it requires copying every element in the
/// buffer.
///
/// # Panics
///
/// Panics if `idx` is larger than the `String`'s length, or if it does not
/// lie on a [`char`] boundary.
///
/// # Examples
///
/// ```
/// use rune::alloc::String;
///
/// let mut s = String::try_from("bar")?;
///
/// s.try_insert_str(0, "foo")?;
///
/// assert_eq!("foobar", s);
/// # Ok::<_, rune::alloc::Error>(())
/// ```
#[inline]
pub fn try_insert_str(&mut self, idx: usize, string: &str) -> Result<(), Error> {
assert!(self.is_char_boundary(idx));
unsafe {
self.insert_bytes(idx, string.as_bytes())?;
}
Ok(())
}
/// Returns a mutable reference to the contents of this `String`.
///
/// # Safety
///
/// This function is unsafe because the returned `&mut Vec` allows writing
/// bytes which are not valid UTF-8. If this constraint is violated, using
/// the original `String` after dropping the `&mut Vec` may violate memory
/// safety, as the rest of the standard library assumes that `String`s are
/// valid UTF-8.
///
/// # Examples
///
/// ```
/// use rune::alloc::String;
///
/// let mut s = String::try_from("hello")?;
///
/// unsafe {
/// let vec = s.as_mut_vec();
/// assert_eq!(&[104, 101, 108, 108, 111][..], &vec[..]);
///
/// vec.reverse();
/// }
/// assert_eq!(s, "olleh");
/// # Ok::<_, rune::alloc::Error>(())
/// ```
#[inline]
pub unsafe fn as_mut_vec(&mut self) -> &mut Vec<u8, A> {
&mut self.vec
}
/// Returns the length of this `String`, in bytes, not [`char`]s or
/// graphemes. In other words, it might not be what a human considers the
/// length of the string.
///
/// # Examples
///
/// ```
/// use rune::alloc::String;
///
/// let a = String::try_from("foo")?;
/// assert_eq!(a.len(), 3);
///
/// let fancy_f = String::try_from("ƒoo")?;
/// assert_eq!(fancy_f.len(), 4);
/// assert_eq!(fancy_f.chars().count(), 3);
/// # Ok::<_, rune::alloc::Error>(())
/// ```
#[inline]
#[must_use]
pub fn len(&self) -> usize {
self.vec.len()
}
/// Returns `true` if this `String` has a length of zero, and `false`
/// otherwise.
///
/// # Examples
///
/// ```
/// use rune::alloc::String;
///
/// let mut v = String::new();
/// assert!(v.is_empty());
///
/// v.try_push('a')?;
/// assert!(!v.is_empty());
/// # Ok::<_, rune::alloc::Error>(())
/// ```
#[inline]
#[must_use]
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Splits the string into two at the given byte index.
///
/// Returns a newly allocated `String`. `self` contains bytes `[0, at)`, and
/// the returned `String` contains bytes `[at, len)`. `at` must be on the
/// boundary of a UTF-8 code point.
///
/// Note that the capacity of `self` does not change.
///
/// # Panics
///
/// Panics if `at` is not on a `UTF-8` code point boundary, or if it is beyond the last
/// code point of the string.
///
/// # Examples
///
/// ```
/// use rune::alloc::String;
///
/// let mut hello = String::try_from("Hello, World!")?;
/// let world = hello.try_split_off(7)?;
/// assert_eq!(hello, "Hello, ");
/// assert_eq!(world, "World!");
/// # Ok::<_, rune::alloc::Error>(())
/// ```
#[inline]
#[must_use = "use `.truncate()` if you don't need the other half"]
pub fn try_split_off(&mut self, at: usize) -> Result<String<A>, Error>
where
A: Clone,
{
assert!(self.is_char_boundary(at));
let other = self.vec.try_split_off(at)?;
Ok(unsafe { String::from_utf8_unchecked(other) })
}
/// Truncates this `String`, removing all contents.
///
/// While this means the `String` will have a length of zero, it does not
/// touch its capacity.
///
/// # Examples
///
/// ```
/// use rune::alloc::String;
///
/// let mut s = String::try_from("foo")?;
///
/// s.clear();
///
/// assert!(s.is_empty());
/// assert_eq!(0, s.len());
/// assert_eq!(3, s.capacity());
/// # Ok::<_, rune::alloc::Error>(())
/// ```
#[inline]
pub fn clear(&mut self) {
self.vec.clear()
}
/// Removes the specified range from the string in bulk, returning all
/// removed characters as an iterator.
///
/// The returned iterator keeps a mutable borrow on the string to optimize
/// its implementation.
///
/// # Panics
///
/// Panics if the starting point or end point do not lie on a [`char`]
/// boundary, or if they're out of bounds.
///
/// # Leaking
///
/// If the returned iterator goes out of scope without being dropped (due to
/// [`core::mem::forget`], for example), the string may still contain a copy
/// of any drained characters, or may have lost characters arbitrarily,
/// including characters outside the range.
///
/// # Examples
///
/// ```
/// use rune::alloc::String;
/// use rune::alloc::prelude::*;
///
/// let mut s = String::try_from("α is alpha, β is beta")?;
/// let beta_offset = s.find('β').unwrap_or(s.len());
///
/// // Remove the range up until the β from the string
/// let t: String = s.drain(..beta_offset).try_collect()?;
/// assert_eq!(t, "α is alpha, ");
/// assert_eq!(s, "β is beta");
///
/// // A full range clears the string, like `clear()` does
/// s.drain(..);
/// assert_eq!(s, "");
/// # Ok::<_, rune::alloc::Error>(())
/// ```
pub fn drain<R>(&mut self, range: R) -> Drain<'_, A>
where
R: RangeBounds<usize>,
{
// Memory safety
//
// The String version of Drain does not have the memory safety issues
// of the vector version. The data is just plain bytes.
// Because the range removal happens in Drop, if the Drain iterator is leaked,
// the removal will not happen.
let Range { start, end } = slice_range(range, ..self.len());
assert!(self.is_char_boundary(start));
assert!(self.is_char_boundary(end));
// Take out two simultaneous borrows. The &mut String won't be accessed
// until iteration is over, in Drop.
let self_ptr = self as *mut _;
// SAFETY: `slice::range` and `is_char_boundary` do the appropriate bounds checks.
let chars_iter = unsafe { self.get_unchecked(start..end) }.chars();
Drain {
start,
end,
iter: chars_iter,
string: self_ptr,
}
}
/// Removes the specified range in the string,
/// and replaces it with the given string.
/// The given string doesn't need to be the same length as the range.
///
/// # Panics
///
/// Panics if the starting point or end point do not lie on a [`char`]
/// boundary, or if they're out of bounds.
///
/// # Examples
///
/// ```
/// use rune::alloc::String;
///
/// let mut s = String::try_from("α is alpha, β is beta")?;
/// let beta_offset = s.find('β').unwrap_or(s.len());
///
/// // Replace the range up until the β from the string
/// s.try_replace_range(..beta_offset, "Α is capital alpha; ")?;
/// assert_eq!(s, "Α is capital alpha; β is beta");
/// # Ok::<_, rune::alloc::Error>(())
/// ```
pub fn try_replace_range<R>(&mut self, range: R, replace_with: &str) -> Result<(), Error>
where
R: RangeBounds<usize>,
{
// Memory safety
//
// Replace_range does not have the memory safety issues of a vector Splice.
// of the vector version. The data is just plain bytes.
// WARNING: Inlining this variable would be unsound (#81138)
let start = range.start_bound();
match start {
Included(&n) => assert!(self.is_char_boundary(n)),
Excluded(&n) => assert!(self.is_char_boundary(n + 1)),
Unbounded => {}
};
// WARNING: Inlining this variable would be unsound (#81138)
let end = range.end_bound();
match end {
Included(&n) => assert!(self.is_char_boundary(n + 1)),
Excluded(&n) => assert!(self.is_char_boundary(n)),
Unbounded => {}
};
// Using `range` again would be unsound (#81138)
// We assume the bounds reported by `range` remain the same, but
// an adversarial implementation could change between calls
unsafe { self.as_mut_vec() }.try_splice_in_place((start, end), replace_with.bytes())?;
Ok(())
}
/// Converts this `String` into a <code>[Box]<[str]></code>.
///
/// This will drop any excess capacity.
///
/// [str]: prim@str "str"
///
/// # Examples
///
/// ```
/// use rune::alloc::String;
/// let s = String::try_from("hello")?;
///
/// let b = s.try_into_boxed_str()?;
/// # Ok::<_, rune::alloc::Error>(())
/// ```
#[must_use = "`self` will be dropped if the result is not used"]
#[inline]
pub fn try_into_boxed_str(self) -> Result<Box<str, A>, Error> {
let slice = self.vec.try_into_boxed_slice()?;
Ok(unsafe { crate::str::from_boxed_utf8_unchecked(slice) })
}
/// Consumes and leaks the `String`, returning a mutable reference to the contents,
/// `&'a mut str`.
///
/// The caller has free choice over the returned lifetime, including `'static`. Indeed,
/// this function is ideally used for data that lives for the remainder of the program's life,
/// as dropping the returned reference will cause a memory leak.
///
/// It does not reallocate or shrink the `String`,
/// so the leaked allocation may include unused capacity that is not part
/// of the returned slice. If you don't want that, call [`try_into_boxed_str`],
/// and then [`Box::leak`].
///
/// [`try_into_boxed_str`]: Self::try_into_boxed_str
///
/// # Examples
///
/// ```
/// # #[cfg(not(miri))]
/// # fn main() -> Result<(), rune_alloc::Error> {
/// use rune::alloc::String;
///
/// let x = String::try_from("bucket")?;
/// let static_ref: &'static mut str = x.leak();
/// assert_eq!(static_ref, "bucket");
/// # Ok(())
/// # }
/// # #[cfg(miri)] fn main() {}
/// ```
#[inline]
pub fn leak<'a>(self) -> &'a mut str
where
A: 'a,
{
let slice = self.vec.leak();
unsafe { from_utf8_unchecked_mut(slice) }
}
}
impl<A: Allocator> FromUtf8Error<A> {
/// Returns a slice of [`u8`]s bytes that were attempted to convert to a `String`.
///
/// # Examples
///
/// ```
/// use rune::alloc::{try_vec, String};
///
/// // some invalid bytes, in a vector
/// let bytes = try_vec![0, 159];
///
/// let value = String::from_utf8(bytes);
///
/// assert_eq!(&[0, 159], value.unwrap_err().as_bytes());
/// # Ok::<_, rune::alloc::Error>(())
/// ```
#[must_use]
pub fn as_bytes(&self) -> &[u8] {
&self.bytes[..]
}
/// Returns the bytes that were attempted to convert to a `String`.
///
/// This method is carefully constructed to avoid allocation. It will
/// consume the error, moving out the bytes, so that a copy of the bytes
/// does not need to be made.
///
/// # Examples
///
/// ```
/// use rune::alloc::{try_vec, String};
///
/// // some invalid bytes, in a vector
/// let bytes = try_vec![0, 159];
///
/// let value = String::from_utf8(bytes);
///
/// assert_eq!(try_vec![0, 159], value.unwrap_err().into_bytes());
/// # Ok::<_, rune::alloc::Error>(())
/// ```
#[must_use = "`self` will be dropped if the result is not used"]
pub fn into_bytes(self) -> Vec<u8, A> {
self.bytes
}
/// Fetch a `Utf8Error` to get more details about the conversion failure.
///
/// The [`Utf8Error`] type provided by [`std::str`] represents an error that
/// may occur when converting a slice of [`u8`]s to a [`&str`]. In this
/// sense, it's an analogue to `FromUtf8Error`. See its documentation for
/// more details on using it.
///
/// [`std::str`]: core::str "std::str"
/// [`&str`]: prim@str "&str"
///
/// # Examples
///
/// ```
/// use rune::alloc::{try_vec, String};
///
/// // some invalid bytes, in a vector
/// let bytes = try_vec![0, 159];
///
/// let error = String::from_utf8(bytes).unwrap_err().utf8_error();
///
/// // the first byte is invalid here
/// assert_eq!(1, error.valid_up_to());
/// # Ok::<_, rune::alloc::Error>(())
/// ```
#[must_use]
pub fn utf8_error(&self) -> Utf8Error {
self.error
}
}
impl<A: Allocator> Default for String<A>
where
A: Default,
{
/// Construct a default string.
///
/// # Examples
///
/// ```
/// use rune::alloc::String;
/// let s = String::default();
/// assert_eq!(s, "");
/// ```
fn default() -> Self {
Self::new_in(A::default())
}
}
impl<A: Allocator> Borrow<str> for String<A> {
#[inline]
fn borrow(&self) -> &str {
&self[..]
}
}
impl<A: Allocator> fmt::Display for FromUtf8Error<A> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Display::fmt(&self.error, f)
}
}
impl<A: Allocator> core::error::Error for FromUtf8Error<A> {}
impl<A: Allocator + Clone> TryClone for String<A> {
fn try_clone(&self) -> Result<Self, Error> {
Ok(String {
vec: self.vec.try_clone()?,
})
}
}
#[cfg(test)]
impl<A: Allocator + Clone> Clone for String<A> {
fn clone(&self) -> Self {
self.try_clone().abort()
}
}
impl<A: Allocator> PartialEq for String<A> {
#[inline]
fn eq(&self, other: &Self) -> bool {
self.vec == other.vec
}
}
impl<A: Allocator> Eq for String<A> {}
impl<A: Allocator> PartialOrd for String<A> {
#[inline]
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl<A: Allocator> Ord for String<A> {
#[inline]
fn cmp(&self, other: &Self) -> Ordering {
self.vec.cmp(&other.vec)
}
}
macro_rules! impl_eq {
($lhs:ty, $rhs: ty) => {
#[allow(unused_lifetimes)]
#[allow(clippy::partialeq_ne_impl)]
impl<'a, 'b> PartialEq<$rhs> for $lhs {
#[inline]
fn eq(&self, other: &$rhs) -> bool {
PartialEq::eq(&self[..], &other[..])
}
#[inline]
fn ne(&self, other: &$rhs) -> bool {
PartialEq::ne(&self[..], &other[..])
}
}
#[allow(unused_lifetimes)]
#[allow(clippy::partialeq_ne_impl)]
impl<'a, 'b> PartialEq<$lhs> for $rhs {
#[inline]
fn eq(&self, other: &$lhs) -> bool {
PartialEq::eq(&self[..], &other[..])
}
#[inline]
fn ne(&self, other: &$lhs) -> bool {
PartialEq::ne(&self[..], &other[..])
}
}
};
}
impl_eq! { String, str }
impl_eq! { String, &'a str }
impl_eq! { Cow<'a, str>, str }
impl_eq! { Cow<'a, str>, &'b str }
impl_eq! { Cow<'a, str>, String }
impl<A: Allocator> fmt::Display for String<A> {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Display::fmt(&**self, f)
}
}
impl<A: Allocator> fmt::Debug for String<A> {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(&**self, f)
}
}
impl<A: Allocator> hash::Hash for String<A> {
#[inline]
fn hash<H: hash::Hasher>(&self, hasher: &mut H) {
(**self).hash(hasher)
}
}
impl<A: Allocator> ops::Index<ops::Range<usize>> for String<A> {
type Output = str;
#[inline]
fn index(&self, index: ops::Range<usize>) -> &str {
&self[..][index]
}
}
impl<A: Allocator> ops::Index<ops::RangeTo<usize>> for String<A> {
type Output = str;
#[inline]
fn index(&self, index: ops::RangeTo<usize>) -> &str {
&self[..][index]
}
}
impl<A: Allocator> ops::Index<ops::RangeFrom<usize>> for String<A> {
type Output = str;
#[inline]
fn index(&self, index: ops::RangeFrom<usize>) -> &str {
&self[..][index]
}
}
impl<A: Allocator> ops::Index<ops::RangeFull> for String<A> {
type Output = str;
#[inline]
fn index(&self, _index: ops::RangeFull) -> &str {
unsafe { from_utf8_unchecked(&self.vec) }
}
}
impl<A: Allocator> ops::Index<ops::RangeInclusive<usize>> for String<A> {
type Output = str;
#[inline]
fn index(&self, index: ops::RangeInclusive<usize>) -> &str {
Index::index(&**self, index)
}
}
impl<A: Allocator> ops::Index<ops::RangeToInclusive<usize>> for String<A> {
type Output = str;
#[inline]
fn index(&self, index: ops::RangeToInclusive<usize>) -> &str {
Index::index(&**self, index)
}
}
impl<A: Allocator> ops::IndexMut<ops::Range<usize>> for String<A> {
#[inline]
fn index_mut(&mut self, index: ops::Range<usize>) -> &mut str {
&mut self[..][index]
}
}
impl<A: Allocator> ops::IndexMut<ops::RangeTo<usize>> for String<A> {
#[inline]
fn index_mut(&mut self, index: ops::RangeTo<usize>) -> &mut str {
&mut self[..][index]
}
}
impl<A: Allocator> ops::IndexMut<ops::RangeFrom<usize>> for String<A> {
#[inline]
fn index_mut(&mut self, index: ops::RangeFrom<usize>) -> &mut str {
&mut self[..][index]
}
}
impl<A: Allocator> ops::IndexMut<ops::RangeFull> for String<A> {
#[inline]
fn index_mut(&mut self, _index: ops::RangeFull) -> &mut str {
unsafe { from_utf8_unchecked_mut(&mut self.vec) }
}
}
impl<A: Allocator> ops::IndexMut<ops::RangeInclusive<usize>> for String<A> {
#[inline]
fn index_mut(&mut self, index: ops::RangeInclusive<usize>) -> &mut str {
IndexMut::index_mut(&mut **self, index)
}
}
impl<A: Allocator> ops::IndexMut<ops::RangeToInclusive<usize>> for String<A> {
#[inline]
fn index_mut(&mut self, index: ops::RangeToInclusive<usize>) -> &mut str {
IndexMut::index_mut(&mut **self, index)
}
}
impl<A: Allocator> ops::Deref for String<A> {
type Target = str;
#[inline]
fn deref(&self) -> &str {
unsafe { from_utf8_unchecked(&self.vec) }
}
}
impl<A: Allocator> ops::DerefMut for String<A> {
#[inline]
fn deref_mut(&mut self) -> &mut str {
unsafe { from_utf8_unchecked_mut(&mut self.vec) }
}
}
impl<A: Allocator> AsRef<str> for String<A> {
#[inline]
fn as_ref(&self) -> &str {
self
}
}
impl<A: Allocator> AsMut<str> for String<A> {
#[inline]
fn as_mut(&mut self) -> &mut str {
self
}
}
#[cfg(feature = "std")]
impl<A: Allocator> AsRef<std::ffi::OsStr> for String<A> {
#[inline]
fn as_ref(&self) -> &std::ffi::OsStr {
(**self).as_ref()
}
}
impl<A: Allocator> AsRef<[u8]> for String<A> {
#[inline]
fn as_ref(&self) -> &[u8] {
self.as_bytes()
}
}
impl<A: Allocator> From<Box<str, A>> for String<A> {
/// Converts the given boxed `str` slice to a [`String`].
/// It is notable that the `str` slice is owned.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use rune::alloc::{Box, String};
///
/// let s1: String = String::try_from("hello world")?;
/// let s2: Box<str> = s1.try_into_boxed_str()?;
/// let s3: String = String::from(s2);
///
/// assert_eq!("hello world", s3);
/// # Ok::<_, rune::alloc::Error>(())
/// ```
fn from(s: Box<str, A>) -> String<A> {
crate::str::into_string(s)
}
}
#[cfg(feature = "alloc")]
impl TryFrom<::rust_alloc::boxed::Box<str>> for String<Global> {
type Error = Error;
/// Try to convert a std `Box<str>` into a [`String`].
///
/// The result is fallibly allocated on the heap.
fn try_from(s: ::rust_alloc::boxed::Box<str>) -> Result<Self, Error> {
Self::try_from(s.as_ref())
}
}
#[cfg(feature = "alloc")]
impl TryFrom<::rust_alloc::string::String> for String<Global> {
type Error = Error;
/// Try to convert a std `String` into a [`String`].
///
/// The result is fallibly allocated on the heap.
///
/// # Examples
///
/// ```
/// use rune::alloc;
///
/// let s1 = String::from("Hello World");
/// let s2 = alloc::String::try_from(s1)?;
///
/// assert_eq!("Hello World", s2);
/// # Ok::<_, rune::alloc::Error>(())
/// ```
fn try_from(string: ::rust_alloc::string::String) -> Result<Self, Error> {
let mut string = ManuallyDrop::new(string.into_bytes());
let buf = string.as_mut_ptr();
let length = string.len();
let capacity = string.capacity();
if let Ok(layout) = Layout::array::<u8>(capacity) {
Global.take(layout)?;
}
// SAFETY: The layout of the string is identical to the std string and
// it uses the same underlying allocator.
unsafe { Ok(String::from_raw_parts_in(buf, length, capacity, Global)) }
}
}
#[cfg(feature = "alloc")]
impl<A: Allocator> From<String<A>> for ::rust_alloc::string::String {
/// Try to convert a [`String`] into a std `String`.
///
/// The result is allocated on the heap.
fn from(s: String<A>) -> Self {
Self::from(s.as_str())
}
}
#[cfg(feature = "alloc")]
impl<A: Allocator> From<&String<A>> for ::rust_alloc::string::String {
/// Try to convert a [`String`] reference into a std `String`.
///
/// The result is allocated on the heap.
fn from(s: &String<A>) -> Self {
Self::from(s.as_str())
}
}
impl TryFrom<&str> for String<Global> {
type Error = Error;
/// Converts a `&str` into a [`String`].
///
/// The result is fallibly allocated on the heap.
///
/// ```
/// use rune::alloc::String;
///
/// let s = String::try_from("Hello World")?;
/// assert_eq!(s, "Hello World");
/// # Ok::<_, rune::alloc::Error>(())
/// ```
fn try_from(s: &str) -> Result<Self, Error> {
let mut out = String::try_with_capacity_in(s.len(), Global)?;
out.try_push_str(s)?;
Ok(out)
}
}
impl TryFrom<Cow<'_, str>> for String<Global> {
type Error = Error;
/// Converts a `Cow<str>` into a [`String`].
///
/// The result is fallibly allocated on the heap unless the values is
/// `Cow::Owned`.
///
/// ```
/// use rune::alloc::String;
/// use rune::alloc::borrow::Cow;
///
/// let s = Cow::Borrowed("Hello World");
/// let s = String::try_from(s)?;
/// assert_eq!(s, "Hello World");
///
/// let s = Cow::Owned(String::try_from("Hello World")?);
/// let s = String::try_from(s)?;
/// assert_eq!(s, "Hello World");
/// # Ok::<_, rune::alloc::Error>(())
/// ```
fn try_from(s: Cow<'_, str>) -> Result<Self, Error> {
match s {
Cow::Borrowed(s) => Self::try_from(s),
Cow::Owned(s) => Ok(s),
}
}
}
impl<A: Allocator + Clone> TryFrom<&String<A>> for String<A> {
type Error = Error;
/// Converts the given [`String`] to a boxed `str` slice that is owned.
///
/// # Examples
///
/// ```
/// use rune::alloc::{String, Box};
///
/// let s1: String = String::try_from("Hello World")?;
/// let s2: String = String::try_from(&s1)?;
///
/// assert_eq!(s2, "Hello World");
/// # Ok::<_, rune::alloc::Error>(())
/// ```
#[inline]
fn try_from(s: &String<A>) -> Result<Self, Error> {
let mut this = String::new_in(s.allocator().clone());
this.try_push_str(s.as_str())?;
Ok(this)
}
}
impl<A: Allocator> TryFrom<String<A>> for Box<str, A> {
type Error = Error;
/// Converts the given [`String`] to a boxed `str` slice that is owned.
///
/// # Examples
///
/// ```
/// use rune::alloc::{String, Box};
///
/// let s1: String = String::try_from("Hello World")?;
/// let s2: Box<str> = Box::try_from("Hello World")?;
///
/// assert_eq!("Hello World", s2.as_ref());
/// # Ok::<_, rune::alloc::Error>(())
/// ```
#[inline]
fn try_from(s: String<A>) -> Result<Self, Error> {
s.try_into_boxed_str()
}
}
impl TryFrom<Cow<'_, str>> for Box<str> {
type Error = Error;
/// Converts the given [`String`] to a boxed `str` slice that is owned.
///
/// # Examples
///
/// ```
/// use rune::alloc::Box;
/// use rune::alloc::borrow::Cow;
///
/// let s2: Box<str> = Box::try_from(Cow::Borrowed("Hello World"))?;
///
/// assert_eq!("Hello World", s2.as_ref());
/// # Ok::<_, rune::alloc::Error>(())
/// ```
#[inline]
fn try_from(s: Cow<'_, str>) -> Result<Self, Error> {
Self::try_from(s.as_ref())
}
}
impl<A: Allocator> From<String<A>> for Vec<u8, A> {
/// Converts the given [`String`] to a vector [`Vec`] that holds values of type [`u8`].
///
/// # Examples
///
/// ```
/// use rune::alloc::{String, Vec};
///
/// let s1 = String::try_from("hello world")?;
/// let v1 = Vec::from(s1);
///
/// for b in v1 {
/// println!("{b}");
/// }
/// # Ok::<_, rune::alloc::Error>(())
/// ```
#[inline]
fn from(string: String<A>) -> Vec<u8, A> {
string.into_bytes()
}
}
/// A draining iterator for `String`.
///
/// This struct is created by the [`drain`] method on [`String`]. See its
/// documentation for more.
///
/// [`drain`]: String::drain
pub struct Drain<'a, A: Allocator> {
/// Will be used as &'a mut String in the destructor
string: *mut String<A>,
/// Start of part to remove
start: usize,
/// End of part to remove
end: usize,
/// Current remaining range to remove
iter: Chars<'a>,
}
impl<A: Allocator> fmt::Debug for Drain<'_, A> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_tuple("Drain").field(&self.as_str()).finish()
}
}
unsafe impl<A: Allocator> Sync for Drain<'_, A> {}
unsafe impl<A: Allocator> Send for Drain<'_, A> {}
impl<A: Allocator> Drop for Drain<'_, A> {
fn drop(&mut self) {
unsafe {
// Use Vec::drain. "Reaffirm" the bounds checks to avoid
// panic code being inserted again.
let self_vec = (*self.string).as_mut_vec();
if self.start <= self.end && self.end <= self_vec.len() {
self_vec.drain(self.start..self.end);
}
}
}
}
impl<'a, A: Allocator> Drain<'a, A> {
/// Returns the remaining (sub)string of this iterator as a slice.
///
/// # Examples
///
/// ```
/// use rune::alloc::String;
///
/// let mut s = String::try_from("abc")?;
/// let mut drain = s.drain(..);
/// assert_eq!(drain.as_str(), "abc");
/// assert!(drain.next().is_some());
/// assert_eq!(drain.as_str(), "bc");
/// # Ok::<_, rune::alloc::Error>(())
/// ```
#[must_use]
pub fn as_str(&self) -> &str {
self.iter.as_str()
}
}
impl<'a, A: Allocator> AsRef<str> for Drain<'a, A> {
fn as_ref(&self) -> &str {
self.as_str()
}
}
impl<'a, A: Allocator> AsRef<[u8]> for Drain<'a, A> {
fn as_ref(&self) -> &[u8] {
self.as_str().as_bytes()
}
}
impl<A: Allocator> Iterator for Drain<'_, A> {
type Item = char;
#[inline]
fn next(&mut self) -> Option<char> {
self.iter.next()
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.iter.size_hint()
}
#[inline]
fn last(mut self) -> Option<char> {
self.next_back()
}
}
impl<A: Allocator> DoubleEndedIterator for Drain<'_, A> {
#[inline]
fn next_back(&mut self) -> Option<char> {
self.iter.next_back()
}
}
impl<A: Allocator> FusedIterator for Drain<'_, A> {}
impl<A: Allocator> TryWrite for String<A> {
#[inline]
fn try_write_str(&mut self, s: &str) -> Result<(), Error> {
self.try_push_str(s)
}
#[inline]
fn try_write_char(&mut self, c: char) -> Result<(), Error> {
self.try_push(c)
}
}
impl<A: Allocator> TryFromIteratorIn<char, A> for String<A> {
/// Construct a string from an iterator of characters.
///
/// ```
/// use rune::alloc::String;
/// use rune::alloc::prelude::*;
///
/// let string = String::try_from_iter(['a', 'b', 'c'].into_iter())?;
/// assert_eq!(string, "abc");
/// # Ok::<_, rune::alloc::Error>(())
/// ```
fn try_from_iter_in<I>(iter: I, alloc: A) -> Result<Self, Error>
where
I: IntoIterator<Item = char>,
{
let mut this = String::new_in(alloc);
this.try_extend(iter)?;
Ok(this)
}
}
impl<'a, A: Allocator> TryFromIteratorIn<&'a str, A> for String<A> {
/// Construct a string from an iterator of characters.
///
/// ```
/// use rune::alloc::String;
/// use rune::alloc::prelude::*;
///
/// let string = String::try_from_iter(["hello", " ", "world"].into_iter())?;
/// assert_eq!(string, "hello world");
/// # Ok::<_, rune::alloc::Error>(())
/// ```
fn try_from_iter_in<I>(iter: I, alloc: A) -> Result<Self, Error>
where
I: IntoIterator<Item = &'a str>,
{
let mut this = String::new_in(alloc);
this.try_extend(iter)?;
Ok(this)
}
}
impl<T, A: Allocator> TryJoin<char, T, A> for String<A>
where
T: AsRef<str>,
{
fn try_join_in<I>(iter: I, sep: char, alloc: A) -> Result<Self, Error>
where
I: IntoIterator<Item = T>,
{
let mut string = String::new_in(alloc);
let mut iter = iter.into_iter().peekable();
while let Some(value) = iter.next() {
string.try_push_str(value.as_ref())?;
if iter.peek().is_some() {
string.try_push(sep)?;
}
}
Ok(string)
}
}
impl<T, A: Allocator> TryJoin<&str, T, A> for String<A>
where
T: AsRef<str>,
{
fn try_join_in<I>(iter: I, sep: &str, alloc: A) -> Result<Self, Error>
where
I: IntoIterator<Item = T>,
{
let mut string = String::new_in(alloc);
let mut iter = iter.into_iter().peekable();
while let Some(value) = iter.next() {
string.try_push_str(value.as_ref())?;
if iter.peek().is_some() {
string.try_push_str(sep)?;
}
}
Ok(string)
}
}
impl<A: Allocator> TryExtend<char> for String<A> {
/// Extend a string using a character iterator.
///
/// ```
/// use rune::alloc::String;
/// use rune::alloc::prelude::*;
///
/// let mut string = String::new();
/// string.try_extend(['a', 'b', 'c'])?;
/// assert_eq!(string, "abc");
/// # Ok::<_, rune::alloc::Error>(())
/// ```
#[inline]
fn try_extend<I: IntoIterator<Item = char>>(&mut self, iter: I) -> Result<(), Error> {
for value in iter {
self.try_push(value)?;
}
Ok(())
}
}
impl<'a, A: Allocator> TryExtend<&'a str> for String<A> {
/// Extend a string using a character iterator.
///
/// ```
/// use rune::alloc::String;
/// use rune::alloc::prelude::*;
///
/// let mut string = String::new();
/// string.try_extend(["hello", " ", "world"])?;
/// assert_eq!(string, "hello world");
/// # Ok::<_, rune::alloc::Error>(())
/// ```
#[inline]
fn try_extend<I: IntoIterator<Item = &'a str>>(&mut self, iter: I) -> Result<(), Error> {
for value in iter {
self.try_push_str(value)?;
}
Ok(())
}
}