rune/ast/
expr.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
use core::mem::take;
use core::ops;

use crate::ast::prelude::*;

#[test]
#[cfg(not(miri))]
fn ast_parse() {
    rt::<ast::Expr>("()");
    rt::<ast::Expr>("foo[\"foo\"]");
    rt::<ast::Expr>("foo[\"bar\"]");
    rt::<ast::Expr>("foo.bar()");
    rt::<ast::Expr>("var()");
    rt::<ast::Expr>("var");
    rt::<ast::Expr>("42");
    rt::<ast::Expr>("1 + 2 / 3 - 4 * 1");
    rt::<ast::Expr>("let var = 42");
    rt::<ast::Expr>("let var = \"foo bar\"");
    rt::<ast::Expr>("var[\"foo\"] = \"bar\"");
    rt::<ast::Expr>("let var = objects[\"foo\"] + 1");
    rt::<ast::Expr>("var = 42");

    let expr = rt::<ast::Expr>(
        r#"
        if 1 { } else { if 2 { } else { } }
    "#,
    );
    assert!(matches!(expr, ast::Expr::If(..)));

    // Chained function calls.
    rt::<ast::Expr>("foo.bar.baz()");
    rt::<ast::Expr>("foo[0][1][2]");
    rt::<ast::Expr>("foo.bar()[0].baz()[1]");

    rt::<ast::Expr>("42 is i64::i64");
    rt::<ast::Expr>("{ let x = 1; x }");

    let expr = rt::<ast::Expr>("#[cfg(debug_assertions)] { assert_eq(x, 32); }");
    assert!(
        matches!(expr, ast::Expr::Block(b) if b.attributes.len() == 1 && b.block.statements.len() == 1)
    );

    rt::<ast::Expr>("#{\"foo\": b\"bar\"}");
    rt::<ast::Expr>("Disco {\"never_died\": true }");
    rt::<ast::Expr>("(false, 1, 'n')");
    rt::<ast::Expr>("[false, 1, 'b']");

    let expr = rt::<ast::Expr>(r#"if true {} else {}"#);
    assert!(matches!(expr, ast::Expr::If(..)));

    let expr = rt::<ast::Expr>("if 1 { } else { if 2 { } else { } }");
    assert!(matches!(expr, ast::Expr::If(..)));

    let expr = rt::<ast::Expr>(r#"while true {}"#);
    assert!(matches!(expr, ast::Expr::While(..)));

    rt::<ast::Expr>("format!(\"{}\", a).bar()");
}

/// Indicator that an expression should be parsed with an eager brace.
#[derive(Debug, Clone, Copy)]
pub(crate) struct EagerBrace(bool);

/// Indicates that an expression should be parsed with eager braces.
pub(crate) const EAGER_BRACE: EagerBrace = EagerBrace(true);

/// Indicates that an expression should not be parsed with eager braces. This is
/// used to solve a parsing ambiguity.
pub(crate) const NOT_EAGER_BRACE: EagerBrace = EagerBrace(false);

impl ops::Deref for EagerBrace {
    type Target = bool;

    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

/// Indicator that an expression should be parsed as an eager binary expression.
#[derive(Debug, Clone, Copy)]
pub(crate) struct EagerBinary(bool);

/// Indicates that an expression should be parsed as a binary expression.
pub(crate) const EAGER_BINARY: EagerBinary = EagerBinary(true);

/// Indicates that an expression should not be parsed as a binary expression.
pub(crate) const NOT_EAGER_BINARY: EagerBinary = EagerBinary(false);

impl ops::Deref for EagerBinary {
    type Target = bool;

    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

/// Indicates if an expression can be called. By default, this depends on if the
/// expression is a block expression (no) or not (yes). This allows the caller
/// to contextually override that behavior.
#[derive(Debug, Clone, Copy)]
pub(crate) struct Callable(bool);

/// Indicates that an expression should be treated as if it could be callable.
/// Such as `foo::bar(42)`.
pub(crate) const CALLABLE: Callable = Callable(true);

/// Indicates that an expression should be treated as if it's *not* callable.
/// This is used to solve otherwise parsing ambiguities.
pub(crate) const NOT_CALLABLE: Callable = Callable(false);

impl ops::Deref for Callable {
    type Target = bool;

    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

/// A rune expression.
#[derive(Debug, TryClone, PartialEq, Eq, ToTokens, Spanned)]
#[non_exhaustive]
pub enum Expr {
    /// An path expression.
    Path(ast::Path),
    /// An assign expression.
    Assign(ast::ExprAssign),
    /// A while loop.
    While(ast::ExprWhile),
    /// An unconditional loop.
    Loop(ast::ExprLoop),
    /// An for loop.
    For(ast::ExprFor),
    /// A let expression.
    Let(ast::ExprLet),
    /// An if expression.
    If(ast::ExprIf),
    /// An match expression.
    Match(ast::ExprMatch),
    /// A function call,
    Call(ast::ExprCall),
    /// A field access on an expression.
    FieldAccess(ast::ExprFieldAccess),
    /// A binary expression.
    Binary(ast::ExprBinary),
    /// A unary expression.
    Unary(ast::ExprUnary),
    /// An index set operation.
    Index(ast::ExprIndex),
    /// A break expression.
    Break(ast::ExprBreak),
    /// A continue expression.
    Continue(ast::ExprContinue),
    /// A yield expression.
    Yield(ast::ExprYield),
    /// A block as an expression.
    Block(ast::ExprBlock),
    /// A return statement.
    Return(ast::ExprReturn),
    /// An await expression.
    Await(ast::ExprAwait),
    /// Try expression.
    Try(ast::ExprTry),
    /// A select expression.
    Select(ast::ExprSelect),
    /// A closure expression.
    Closure(ast::ExprClosure),
    /// A literal expression.
    Lit(ast::ExprLit),
    /// An object literal
    Object(ast::ExprObject),
    /// A tuple literal
    Tuple(ast::ExprTuple),
    /// A vec literal
    Vec(ast::ExprVec),
    /// A range expression.
    Range(ast::ExprRange),
    /// A grouped empty expression.
    Empty(ast::ExprEmpty),
    /// A grouped expression.
    Group(ast::ExprGroup),
    /// A macro call,
    MacroCall(ast::MacroCall),
}

impl Expr {
    /// Access the attributes of the expression.
    pub(crate) fn attributes(&self) -> &[ast::Attribute] {
        match self {
            Self::Path(_) => &[],
            Self::Break(expr) => &expr.attributes,
            Self::Continue(expr) => &expr.attributes,
            Self::Yield(expr) => &expr.attributes,
            Self::Block(expr) => &expr.attributes,
            Self::Return(expr) => &expr.attributes,
            Self::Closure(expr) => &expr.attributes,
            Self::Match(expr) => &expr.attributes,
            Self::While(expr) => &expr.attributes,
            Self::Loop(expr) => &expr.attributes,
            Self::For(expr) => &expr.attributes,
            Self::Let(expr) => &expr.attributes,
            Self::If(expr) => &expr.attributes,
            Self::Select(expr) => &expr.attributes,
            Self::Lit(expr) => &expr.attributes,
            Self::Assign(expr) => &expr.attributes,
            Self::Binary(expr) => &expr.attributes,
            Self::Call(expr) => &expr.attributes,
            Self::FieldAccess(expr) => &expr.attributes,
            Self::Group(expr) => &expr.attributes,
            Self::Empty(expr) => &expr.attributes,
            Self::Unary(expr) => &expr.attributes,
            Self::Index(expr) => &expr.attributes,
            Self::Await(expr) => &expr.attributes,
            Self::Try(expr) => &expr.attributes,
            Self::MacroCall(expr) => &expr.attributes,
            Self::Object(expr) => &expr.attributes,
            Self::Range(expr) => &expr.attributes,
            Self::Tuple(expr) => &expr.attributes,
            Self::Vec(expr) => &expr.attributes,
        }
    }

    /// Indicates if an expression needs a semicolon or must be last in a block.
    pub(crate) fn needs_semi(&self) -> bool {
        match self {
            Self::While(_) => false,
            Self::Loop(_) => false,
            Self::For(_) => false,
            Self::If(_) => false,
            Self::Match(_) => false,
            Self::Block(_) => false,
            Self::Select(_) => false,
            Self::MacroCall(macro_call) => macro_call.needs_semi(),
            _ => true,
        }
    }

    /// Indicates if an expression is callable unless it's permitted by an
    /// override.
    pub(crate) fn is_callable(&self, callable: bool) -> bool {
        match self {
            Self::While(_) => false,
            Self::Loop(_) => callable,
            Self::For(_) => false,
            Self::If(_) => callable,
            Self::Match(_) => callable,
            Self::Select(_) => callable,
            _ => true,
        }
    }

    /// Take the attributes from the expression.
    pub(crate) fn take_attributes(&mut self) -> Vec<ast::Attribute> {
        match self {
            Self::Path(_) => Vec::new(),
            Self::Break(expr) => take(&mut expr.attributes),
            Self::Continue(expr) => take(&mut expr.attributes),
            Self::Yield(expr) => take(&mut expr.attributes),
            Self::Block(expr) => take(&mut expr.attributes),
            Self::Return(expr) => take(&mut expr.attributes),
            Self::Closure(expr) => take(&mut expr.attributes),
            Self::Match(expr) => take(&mut expr.attributes),
            Self::While(expr) => take(&mut expr.attributes),
            Self::Loop(expr) => take(&mut expr.attributes),
            Self::For(expr) => take(&mut expr.attributes),
            Self::Let(expr) => take(&mut expr.attributes),
            Self::If(expr) => take(&mut expr.attributes),
            Self::Select(expr) => take(&mut expr.attributes),
            Self::Lit(expr) => take(&mut expr.attributes),
            Self::Assign(expr) => take(&mut expr.attributes),
            Self::Binary(expr) => take(&mut expr.attributes),
            Self::Call(expr) => take(&mut expr.attributes),
            Self::FieldAccess(expr) => take(&mut expr.attributes),
            Self::Group(expr) => take(&mut expr.attributes),
            Self::Empty(expr) => take(&mut expr.attributes),
            Self::Unary(expr) => take(&mut expr.attributes),
            Self::Index(expr) => take(&mut expr.attributes),
            Self::Await(expr) => take(&mut expr.attributes),
            Self::Try(expr) => take(&mut expr.attributes),
            Self::Object(expr) => take(&mut expr.attributes),
            Self::Range(expr) => take(&mut expr.attributes),
            Self::Vec(expr) => take(&mut expr.attributes),
            Self::Tuple(expr) => take(&mut expr.attributes),
            Self::MacroCall(expr) => take(&mut expr.attributes),
        }
    }

    /// Check if this expression is a literal expression.
    ///
    /// There are exactly two kinds of literal expressions:
    /// * Ones that are ExprLit
    /// * Unary expressions which are the negate operation.
    pub(crate) fn is_lit(&self) -> bool {
        match self {
            Self::Lit(..) => return true,
            Self::Unary(ast::ExprUnary {
                op: ast::UnOp::Neg(..),
                expr,
                ..
            }) => {
                return matches!(
                    &**expr,
                    Self::Lit(ast::ExprLit {
                        lit: ast::Lit::Number(..),
                        ..
                    })
                );
            }
            _ => (),
        }

        false
    }

    /// Internal function to construct a literal expression.
    pub(crate) fn from_lit(lit: ast::Lit) -> Self {
        Self::Lit(ast::ExprLit {
            attributes: Vec::new(),
            lit,
        })
    }

    /// Parse an expression without an eager brace.
    ///
    /// This is used to solve a syntax ambiguity when parsing expressions that
    /// are arguments to statements immediately followed by blocks. Like `if`,
    /// `while`, and `match`.
    pub(crate) fn parse_without_eager_brace(p: &mut Parser<'_>) -> Result<Self> {
        Self::parse_with(p, NOT_EAGER_BRACE, EAGER_BINARY, CALLABLE)
    }

    /// Helper to perform a parse with the given meta.
    pub(crate) fn parse_with_meta(
        p: &mut Parser<'_>,
        attributes: &mut Vec<ast::Attribute>,
        callable: Callable,
    ) -> Result<Self> {
        let lhs = primary(p, attributes, EAGER_BRACE, callable)?;
        let lookahead = ast::BinOp::from_peeker(p.peeker());
        binary(p, lhs, lookahead, 0, EAGER_BRACE)
    }

    /// ull, configurable parsing of an expression.F
    pub(crate) fn parse_with(
        p: &mut Parser<'_>,
        eager_brace: EagerBrace,
        eager_binary: EagerBinary,
        callable: Callable,
    ) -> Result<Self> {
        let mut attributes = p.parse()?;

        let expr = primary(p, &mut attributes, eager_brace, callable)?;

        let expr = if *eager_binary {
            let lookeahead = ast::BinOp::from_peeker(p.peeker());
            binary(p, expr, lookeahead, 0, eager_brace)?
        } else {
            expr
        };

        if let Some(span) = attributes.option_span() {
            return Err(compile::Error::unsupported(span, "attributes"));
        }

        Ok(expr)
    }

    /// Parse expressions that start with an identifier.
    pub(crate) fn parse_with_meta_path(
        p: &mut Parser<'_>,
        attributes: &mut Vec<ast::Attribute>,
        path: ast::Path,
        eager_brace: EagerBrace,
    ) -> Result<Self> {
        if *eager_brace && p.peek::<T!['{']>()? {
            let ident = ast::ObjectIdent::Named(path);

            return Ok(Self::Object(ast::ExprObject::parse_with_meta(
                p,
                take(attributes),
                ident,
            )?));
        }

        if p.peek::<T![!]>()? {
            return Ok(Self::MacroCall(ast::MacroCall::parse_with_meta_path(
                p,
                take(attributes),
                path,
            )?));
        }

        Ok(Self::Path(path))
    }

    pub(crate) fn peek_with_brace(p: &mut Peeker<'_>, eager_brace: EagerBrace) -> bool {
        match p.nth(0) {
            K![async] => true,
            K![self] => true,
            K![select] => true,
            K![#] => true,
            K![-] => true,
            K![!] => true,
            K![&] => true,
            K![*] => true,
            K![while] => true,
            K![loop] => true,
            K![for] => true,
            K![let] => true,
            K![if] => true,
            K![break] => true,
            K![continue] => true,
            K![return] => true,
            K![true] => true,
            K![false] => true,
            K![ident] => true,
            K![::] => true,
            K![number] => true,
            K![char] => true,
            K![byte] => true,
            K![str] => true,
            K![bytestr] => true,
            K!['label] => matches!(p.nth(1), K![:]),
            K![..] => true,
            K!['('] => true,
            K!['['] => true,
            K!['{'] if *eager_brace => true,
            _ => false,
        }
    }
}

impl Parse for Expr {
    fn parse(p: &mut Parser<'_>) -> Result<Self> {
        Self::parse_with(p, EAGER_BRACE, EAGER_BINARY, CALLABLE)
    }
}

impl Peek for Expr {
    fn peek(p: &mut Peeker<'_>) -> bool {
        Self::peek_with_brace(p, EAGER_BRACE)
    }
}

/// Primary parse entry point.
fn primary(
    p: &mut Parser<'_>,
    attributes: &mut Vec<ast::Attribute>,
    eager_brace: EagerBrace,
    callable: Callable,
) -> Result<Expr> {
    let expr = base(p, attributes, eager_brace)?;
    chain(p, expr, callable)
}

/// Parse a basic expression.
fn base(
    p: &mut Parser<'_>,
    attributes: &mut Vec<ast::Attribute>,
    eager_brace: EagerBrace,
) -> Result<Expr> {
    if let Some(path) = p.parse::<Option<ast::Path>>()? {
        return Expr::parse_with_meta_path(p, attributes, path, eager_brace);
    }

    if ast::Lit::peek_in_expr(p.peeker()) {
        return Ok(Expr::Lit(ast::ExprLit::parse_with_meta(
            p,
            take(attributes),
        )?));
    }

    let mut label = p.parse::<Option<(ast::Label, T![:])>>()?;
    let mut async_token = p.parse::<Option<T![async]>>()?;
    let mut const_token = p.parse::<Option<T![const]>>()?;
    let mut move_token = p.parse::<Option<T![move]>>()?;

    let expr = match p.nth(0)? {
        K![..] => {
            let limits = ast::ExprRangeLimits::HalfOpen(p.parse()?);
            range(p, take(attributes), None, limits, eager_brace)?
        }
        K![..=] => {
            let limits = ast::ExprRangeLimits::Closed(p.parse()?);
            range(p, take(attributes), None, limits, eager_brace)?
        }
        K![#] => {
            let ident = ast::ObjectIdent::Anonymous(p.parse()?);

            Expr::Object(ast::ExprObject::parse_with_meta(
                p,
                take(attributes),
                ident,
            )?)
        }
        K![||] | K![|] => Expr::Closure(ast::ExprClosure::parse_with_meta(
            p,
            take(attributes),
            take(&mut async_token),
            take(&mut move_token),
        )?),
        K![select] => Expr::Select(ast::ExprSelect::parse_with_attributes(p, take(attributes))?),
        K![!] | K![-] | K![&] | K![*] => Expr::Unary(ast::ExprUnary::parse_with_meta(
            p,
            take(attributes),
            eager_brace,
        )?),
        K![while] => Expr::While(ast::ExprWhile::parse_with_meta(
            p,
            take(attributes),
            take(&mut label),
        )?),
        K![loop] => Expr::Loop(ast::ExprLoop::parse_with_meta(
            p,
            take(attributes),
            take(&mut label),
        )?),
        K![for] => Expr::For(ast::ExprFor::parse_with_meta(
            p,
            take(attributes),
            take(&mut label),
        )?),
        K![let] => Expr::Let(ast::ExprLet::parse_with_meta(p, take(attributes))?),
        K![if] => Expr::If(ast::ExprIf::parse_with_meta(p, take(attributes))?),
        K![match] => Expr::Match(ast::ExprMatch::parse_with_attributes(p, take(attributes))?),
        K!['['] => Expr::Vec(ast::ExprVec::parse_with_meta(p, take(attributes))?),
        ast::Kind::Open(ast::Delimiter::Empty) => empty_group(p, take(attributes))?,
        K!['('] => paren_group(p, take(attributes))?,
        K!['{'] => Expr::Block(ast::ExprBlock {
            attributes: take(attributes),
            async_token: take(&mut async_token),
            const_token: take(&mut const_token),
            move_token: take(&mut move_token),
            label: take(&mut label),
            block: p.parse()?,
        }),
        K![break] => Expr::Break(ast::ExprBreak::parse_with_meta(p, take(attributes))?),
        K![continue] => Expr::Continue(ast::ExprContinue::parse_with_meta(p, take(attributes))?),
        K![yield] => Expr::Yield(ast::ExprYield::parse_with_meta(p, take(attributes))?),
        K![return] => Expr::Return(ast::ExprReturn::parse_with_meta(p, take(attributes))?),
        _ => {
            return Err(compile::Error::expected(
                p.tok_at(0)?,
                Expectation::Expression,
            ));
        }
    };

    if let Some(span) = label.option_span() {
        return Err(compile::Error::unsupported(span, "label"));
    }

    if let Some(span) = async_token.option_span() {
        return Err(compile::Error::unsupported(span, "async modifier"));
    }

    if let Some(span) = const_token.option_span() {
        return Err(compile::Error::unsupported(span, "const modifier"));
    }

    if let Some(span) = move_token.option_span() {
        return Err(compile::Error::unsupported(span, "move modifier"));
    }

    Ok(expr)
}

/// Parse an expression chain.
fn chain(p: &mut Parser<'_>, mut expr: Expr, callable: Callable) -> Result<Expr> {
    while !p.is_eof()? {
        let is_callable = expr.is_callable(*callable);

        match p.nth(0)? {
            K!['['] if is_callable => {
                expr = Expr::Index(ast::ExprIndex {
                    attributes: expr.take_attributes(),
                    target: Box::try_new(expr)?,
                    open: p.parse()?,
                    index: p.parse()?,
                    close: p.parse()?,
                });
            }
            // Chained function call.
            K!['('] if is_callable => {
                expr = Expr::Call(ast::ExprCall::parse_with_meta(
                    p,
                    expr.take_attributes(),
                    Box::try_new(expr)?,
                )?);
            }
            K![?] => {
                expr = Expr::Try(ast::ExprTry {
                    attributes: expr.take_attributes(),
                    expr: Box::try_new(expr)?,
                    try_token: p.parse()?,
                });
            }
            K![=] => {
                let eq = p.parse()?;
                let rhs = Expr::parse_with(p, EAGER_BRACE, EAGER_BINARY, CALLABLE)?;

                expr = Expr::Assign(ast::ExprAssign {
                    attributes: expr.take_attributes(),
                    lhs: Box::try_new(expr)?,
                    eq,
                    rhs: Box::try_new(rhs)?,
                });
            }
            K![.] => {
                match p.nth(1)? {
                    // <expr>.await
                    K![await] => {
                        expr = Expr::Await(ast::ExprAwait {
                            attributes: expr.take_attributes(),
                            expr: Box::try_new(expr)?,
                            dot: p.parse()?,
                            await_token: p.parse()?,
                        });
                    }
                    // <expr>.field
                    K![ident] => {
                        expr = Expr::FieldAccess(ast::ExprFieldAccess {
                            attributes: expr.take_attributes(),
                            expr: Box::try_new(expr)?,
                            dot: p.parse()?,
                            expr_field: ast::ExprField::Path(p.parse()?),
                        });
                    }
                    // tuple access: <expr>.<number>
                    K![number] => {
                        expr = Expr::FieldAccess(ast::ExprFieldAccess {
                            attributes: expr.take_attributes(),
                            expr: Box::try_new(expr)?,
                            dot: p.parse()?,
                            expr_field: ast::ExprField::LitNumber(p.parse()?),
                        });
                    }
                    _ => {
                        return Err(compile::Error::new(p.span(0..1), ErrorKind::BadFieldAccess));
                    }
                }
            }
            _ => break,
        }
    }

    Ok(expr)
}

/// Parse a binary expression.
fn binary(
    p: &mut Parser<'_>,
    mut lhs: Expr,
    mut lookahead: Option<ast::BinOp>,
    min_precedence: usize,
    eager_brace: EagerBrace,
) -> Result<Expr> {
    while let Some(op) = lookahead {
        let precedence = op.precedence();

        if precedence < min_precedence {
            break;
        }

        op.advance(p)?;

        match op {
            ast::BinOp::DotDot(token) => {
                lhs = range(
                    p,
                    lhs.take_attributes(),
                    Some(Box::try_new(lhs)?),
                    ast::ExprRangeLimits::HalfOpen(token),
                    eager_brace,
                )?;
                lookahead = ast::BinOp::from_peeker(p.peeker());
                continue;
            }
            ast::BinOp::DotDotEq(token) => {
                lhs = range(
                    p,
                    lhs.take_attributes(),
                    Some(Box::try_new(lhs)?),
                    ast::ExprRangeLimits::Closed(token),
                    eager_brace,
                )?;
                lookahead = ast::BinOp::from_peeker(p.peeker());
                continue;
            }
            _ => (),
        }

        let mut rhs = primary(p, &mut Vec::new(), eager_brace, CALLABLE)?;
        lookahead = ast::BinOp::from_peeker(p.peeker());

        while let Some(next) = lookahead {
            match (precedence, next.precedence()) {
                (lh, rh) if lh < rh => {
                    // Higher precedence elements require us to recurse.
                    rhs = binary(p, rhs, Some(next), lh + 1, eager_brace)?;
                    lookahead = ast::BinOp::from_peeker(p.peeker());
                    continue;
                }
                (lh, rh) if lh == rh => {
                    if !next.is_assoc() {
                        return Err(compile::Error::new(
                            lhs.span().join(rhs.span()),
                            ErrorKind::PrecedenceGroupRequired,
                        ));
                    }
                }
                _ => {}
            };

            break;
        }

        lhs = Expr::Binary(ast::ExprBinary {
            attributes: lhs.take_attributes(),
            lhs: Box::try_new(lhs)?,
            op,
            rhs: Box::try_new(rhs)?,
        });
    }

    Ok(lhs)
}

/// Parse the tail-end of a range.
fn range(
    p: &mut Parser<'_>,
    attributes: Vec<ast::Attribute>,
    from: Option<Box<Expr>>,
    limits: ast::ExprRangeLimits,
    eager_brace: EagerBrace,
) -> Result<Expr> {
    let to = if Expr::peek_with_brace(p.peeker(), eager_brace) {
        Some(Box::try_new(Expr::parse_with(
            p,
            eager_brace,
            EAGER_BINARY,
            CALLABLE,
        )?)?)
    } else {
        None
    };

    Ok(Expr::Range(ast::ExprRange {
        attributes,
        start: from,
        limits,
        end: to,
    }))
}

/// Parsing something that opens with an empty group marker.
fn empty_group(p: &mut Parser<'_>, attributes: Vec<ast::Attribute>) -> Result<Expr> {
    let open = p.parse::<ast::OpenEmpty>()?;
    let expr = p.parse::<Expr>()?;
    let close = p.parse::<ast::CloseEmpty>()?;

    Ok(Expr::Empty(ast::ExprEmpty {
        attributes,
        open,
        expr: Box::try_new(expr)?,
        close,
    }))
}

/// Parsing something that opens with a parenthesis.
fn paren_group(p: &mut Parser<'_>, attributes: Vec<ast::Attribute>) -> Result<Expr> {
    // Empty tuple.
    if let (K!['('], K![')']) = (p.nth(0)?, p.nth(1)?) {
        return Ok(Expr::Tuple(ast::ExprTuple::parse_with_meta(p, attributes)?));
    }

    let open = p.parse::<T!['(']>()?;
    let expr = p.parse::<Expr>()?;

    // Priority expression group.
    if p.peek::<T![')']>()? {
        return Ok(Expr::Group(ast::ExprGroup {
            attributes,
            open,
            expr: Box::try_new(expr)?,
            close: p.parse()?,
        }));
    }

    // Tuple expression. These are distinguished from a group with a single item
    // by adding a `,` at the end like `(foo,)`.
    Ok(Expr::Tuple(ast::ExprTuple::parse_from_first_expr(
        p, attributes, open, expr,
    )?))
}