rune_alloc/
boxed.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
//! The `Box<T>` type for heap allocation.
//!
//! [`Box<T>`], casually referred to as a 'box', provides the simplest form of
//! heap allocation in Rust. Boxes provide ownership for this allocation, and
//! drop their contents when they go out of scope. Boxes also ensure that they
//! never allocate more than `isize::MAX` bytes.
//!
//! # Examples
//!
//! Move a value from the stack to the heap by creating a [`Box`]:
//!
//! ```
//! use rune::alloc::Box;
//!
//! let val: u8 = 5;
//! let boxed: Box<u8> = Box::try_new(val)?;
//! # Ok::<_, rune::alloc::Error>(())
//! ```
//!
//! Move a value from a [`Box`] back to the stack using [Box::into_inner]:
//!
//! ```
//! use rune::alloc::Box;
//!
//! let boxed: Box<u8> = Box::try_new(5)?;
//! let val: u8 = Box::into_inner(boxed);
//! # Ok::<_, rune::alloc::Error>(())
//! ```
//!
//! Creating a recursive data structure:
//!
//! ```
//! use rune::alloc::Box;
//!
//! #[derive(Debug)]
//! enum List<T> {
//!     Cons(T, Box<List<T>>),
//!     Nil,
//! }
//!
//! let list: List<i32> = List::Cons(1, Box::try_new(List::Cons(2, Box::try_new(List::Nil)?))?);
//! println!("{list:?}");
//! # Ok::<_, rune::alloc::Error>(())
//! ```
//!
//! This will print `Cons(1, Cons(2, Nil))`.
//!
//! Recursive structures must be boxed, because if the definition of `Cons`
//! looked like this:
//!
//! ```compile_fail,E0072
//! # enum List<T> {
//! Cons(T, List<T>),
//! # }
//! ```
//!
//! It wouldn't work. This is because the size of a `List` depends on how many
//! elements are in the list, and so we don't know how much memory to allocate
//! for a `Cons`. By introducing a [`Box<T>`], which has a defined size, we know
//! how big `Cons` needs to be.
//!
//! # Memory layout
//!
//! For non-zero-sized values, a [`Box`] will use the [`Global`] allocator for
//! its allocation. It is valid to convert both ways between a [`Box`] and a raw
//! pointer allocated with the [`Global`] allocator, given that the [`Layout`]
//! used with the allocator is correct for the type. More precisely, a `value:
//! *mut T` that has been allocated with the [`Global`] allocator with
//! `Layout::for_value(&*value)` may be converted into a box using
//! [`Box::<T>::from_raw_in(value)`]. Conversely, the memory backing a `value:
//! *mut T` obtained from [`Box::<T>::into_raw_with_allocator`] may be
//! deallocated using the [`Global`] allocator with
//! [`Layout::for_value(&*value)`].
//!
//! For zero-sized values, the `Box` pointer still has to be [valid] for reads
//! and writes and sufficiently aligned. In particular, casting any aligned
//! non-zero integer literal to a raw pointer produces a valid pointer, but a
//! pointer pointing into previously allocated memory that since got freed is
//! not valid. The recommended way to build a Box to a ZST if `Box::new` cannot
//! be used is to use [`ptr::NonNull::dangling`].
//!
//! So long as `T: Sized`, a `Box<T>` is guaranteed to be represented as a
//! single pointer and is also ABI-compatible with C pointers (i.e. the C type
//! `T*`). This means that if you have extern "C" Rust functions that will be
//! called from C, you can define those Rust functions using `Box<T>` types, and
//! use `T*` as corresponding type on the C side. As an example, consider this C
//! header which declares functions that create and destroy some kind of `Foo`
//! value:
//!
//! ```c
//! /* C header */
//!
//! /* Returns ownership to the caller */
//! struct Foo* foo_new(void);
//!
//! /* Takes ownership from the caller; no-op when invoked with null */
//! void foo_delete(struct Foo*);
//! ```
//!
//! These two functions might be implemented in Rust as follows. Here, the
//! `struct Foo*` type from C is translated to `Box<Foo>`, which captures the
//! ownership constraints. Note also that the nullable argument to `foo_delete`
//! is represented in Rust as `Option<Box<Foo>>`, since `Box<Foo>` cannot be
//! null.
//!
//! ```
//! use rune::alloc::Box;
//! use rune::alloc::alloc::AllocError;
//!
//! #[repr(C)]
//! pub struct Foo;
//!
//! #[no_mangle]
//! pub extern "C" fn foo_new() -> Result<Box<Foo>, AllocError> {
//!     Box::try_new(Foo)
//! }
//!
//! #[no_mangle]
//! pub extern "C" fn foo_delete(_: Option<Box<Foo>>) {}
//! ```
//!
//! Even though `Box<T>` has the same representation and C ABI as a C pointer,
//! this does not mean that you can convert an arbitrary `T*` into a `Box<T>`
//! and expect things to work. `Box<T>` values will always be fully aligned,
//! non-null pointers. Moreover, the destructor for `Box<T>` will attempt to
//! free the value with the global allocator. In general, the best practice is
//! to only use `Box<T>` for pointers that originated from the global allocator.
//!
//! **Important.** At least at present, you should avoid using `Box<T>` types
//! for functions that are defined in C but invoked from Rust. In those cases,
//! you should directly mirror the C types as closely as possible. Using types
//! like `Box<T>` where the C definition is just using `T*` can lead to
//! undefined behavior, as described in
//! [rust-lang/unsafe-code-guidelines#198][ucg#198].
//!
//! # Considerations for unsafe code
//!
//! **Warning: This section is not normative and is subject to change, possibly
//! being relaxed in the future! It is a simplified summary of the rules
//! currently implemented in the compiler.**
//!
//! The aliasing rules for `Box<T>` are the same as for `&mut T`. `Box<T>`
//! asserts uniqueness over its content. Using raw pointers derived from a box
//! after that box has been mutated through, moved or borrowed as `&mut T` is
//! not allowed. For more guidance on working with box from unsafe code, see
//! [rust-lang/unsafe-code-guidelines#326][ucg#326].
//!
//!
//! [ucg#198]: https://github.com/rust-lang/unsafe-code-guidelines/issues/198
//! [ucg#326]: https://github.com/rust-lang/unsafe-code-guidelines/issues/326
//! [dereferencing]: core::ops::Deref
//! [`Box::<T>::from_raw_in(value)`]: Box::from_raw_in
//! [`Global`]: crate::alloc::Global
//! [`Layout`]: core::alloc::Layout
//! [`Layout::for_value(&*value)`]: core::alloc::Layout::for_value
//! [valid]: core::ptr#safety

use core::alloc::Layout;
use core::borrow::{Borrow, BorrowMut};
use core::cmp::Ordering;
use core::fmt;
use core::hash::{Hash, Hasher};
use core::mem;
use core::ops::{Deref, DerefMut};
use core::pin::Pin;

use crate::alloc::{AllocError, Allocator, Global};
use crate::clone::TryClone;
use crate::error::Error;
use crate::iter::TryFromIteratorIn;
use crate::path::Path;
use crate::ptr::{self, Unique};
use crate::raw_vec::RawVec;
use crate::vec::Vec;

#[test]
fn ensure_niche_size() {
    assert_eq!(
        core::mem::size_of::<Option<Box<u32>>>(),
        core::mem::size_of::<Box<u32>>()
    );
}

/// A pointer type that uniquely owns a heap allocation of type `T`.
pub struct Box<T: ?Sized, A: Allocator = Global> {
    ptr: Unique<T>,
    alloc: A,
}

impl<T> Box<T, Global> {
    /// Allocates memory on the heap and then places `x` into it.
    ///
    /// This doesn't actually allocate if `T` is zero-sized.
    ///
    /// # Examples
    ///
    /// ```
    /// use rune::alloc::Box;
    ///
    /// let five = Box::try_new(5)?;
    /// # Ok::<_, rune::alloc::Error>(())
    /// ```
    pub fn try_new(value: T) -> Result<Self, AllocError> {
        Self::try_new_in(value, Global)
    }

    /// Constructs a new `Pin<Box<T>>`. If `T` does not implement [`Unpin`],
    /// then `x` will be pinned in memory and unable to be moved.
    ///
    /// Constructing and pinning of the `Box` can also be done in two steps:
    /// `Box::try?pin(x)` does the same as
    /// <code>[Box::into_pin]\([Box::try?new]\(x))</code>. Consider using
    /// [`into_pin`](Box::into_pin) if you already have a `Box<T>`, or if you
    /// want to construct a (pinned) `Box` in a different way than with
    /// [`Box::try_new`].
    #[inline(always)]
    pub fn try_pin(x: T) -> Result<Pin<Box<T>>, AllocError> {
        Ok(Box::try_new(x)?.into())
    }
}

impl<T: ?Sized> Box<T> {
    /// Convert from a std `Box`.
    ///
    /// This causes the underlying allocation to be accounted for by the
    /// [`Global`] allocator.
    ///
    /// A caveat of this method is that the allocation is already in use, but
    /// this might still be necessary because we want access to certain methods
    /// in std `Box` such as the ability to coerce to unsized values.
    ///
    /// # Examples
    ///
    /// ```
    /// use rune::alloc::{Box, Vec};
    /// use rune::alloc::limit;
    /// use std::boxed::Box as StdBox;
    ///
    /// assert_eq!(limit::get(), usize::MAX);
    ///
    /// let b: StdBox<dyn Iterator<Item = u32>> = StdBox::new(1..3);
    /// let mut b = Box::from_std(b)?;
    /// assert_eq!(b.next(), Some(1));
    /// assert_eq!(b.next(), Some(2));
    /// assert_eq!(b.next(), None);
    ///
    /// assert!(limit::get() < usize::MAX);
    /// drop(b);
    ///
    /// assert_eq!(limit::get(), usize::MAX);
    /// # Ok::<_, rune::alloc::Error>(())
    /// ```
    #[cfg(feature = "alloc")]
    pub fn from_std(b: ::rust_alloc::boxed::Box<T>) -> Result<Self, Error> {
        // SAFETY: We've ensured that standard allocations only happen in an
        // allocator which is compatible with our `Global`.
        unsafe {
            // NB: Layout::for_value will return the size of the pointed to
            // value by the box, which for unsized types is the size of the
            // metadata. For sized types the value inside of the box.
            Global.take(Layout::for_value(b.as_ref()))?;
            let raw = ::rust_alloc::boxed::Box::into_raw(b);
            Ok(Box::from_raw_in(raw, Global))
        }
    }
}

impl<T, A: Allocator> Box<T, A> {
    /// Allocates memory in the given allocator then places `x` into it,
    /// returning an error if the allocation fails
    ///
    /// This doesn't actually allocate if `T` is zero-sized.
    ///
    /// # Examples
    ///
    /// ```
    /// use rune::alloc::Box;
    /// use rune::alloc::alloc::Global;
    ///
    /// let five = Box::try_new_in(5, Global)?;
    /// # Ok::<_, rune::alloc::Error>(())
    /// ```
    #[inline]
    pub fn try_new_in(x: T, alloc: A) -> Result<Self, AllocError> {
        let mut boxed = Self::try_new_uninit_in(alloc)?;

        unsafe {
            boxed.as_mut_ptr().write(x);
            Ok(boxed.assume_init())
        }
    }

    /// Constructs a new box with uninitialized contents in the provided
    /// allocator, returning an error if the allocation fails
    ///
    /// # Examples
    ///
    /// ```
    /// use rune::alloc::Box;
    /// use rune::alloc::alloc::Global;
    ///
    /// let mut five = Box::<u32>::try_new_uninit_in(Global)?;
    ///
    /// let five: Box<u32> = unsafe {
    ///     // Deferred initialization:
    ///     five.as_mut_ptr().write(5);
    ///
    ///     five.assume_init()
    /// };
    ///
    /// assert_eq!(*five, 5);
    /// # Ok::<_, rune::alloc::Error>(())
    /// ```
    pub fn try_new_uninit_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError>
    where
        A: Allocator,
    {
        let layout = Layout::new::<mem::MaybeUninit<T>>();
        let ptr = alloc.allocate(layout)?.cast();
        unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) }
    }

    /// Consumes the `Box`, returning the wrapped value.
    #[inline]
    pub fn into_inner(boxed: Self) -> T {
        let this = mem::ManuallyDrop::new(boxed);
        let value = unsafe { ptr::read(this.ptr.as_ptr()) };

        // Free memory associated with the box.
        //
        // SAFETY: We own the box, so we know we can safely deallocate it.
        unsafe {
            let layout = for_value_raw(this.ptr.as_ptr());

            if layout.size() != 0 {
                this.alloc.deallocate(From::from(this.ptr.cast()), layout);
            }
        }

        value
    }
}

impl<T: ?Sized, A: Allocator> Box<T, A> {
    /// Consumes and leaks the `Box`, returning a mutable reference, `&'a mut
    /// T`. Note that the type `T` must outlive the chosen lifetime `'a`. If the
    /// type has only static references, or none at all, then this may be chosen
    /// to be `'static`.
    ///
    /// This function is mainly useful for data that lives for the remainder of
    /// the program's life. Dropping the returned reference will cause a memory
    /// leak. If this is not acceptable, the reference should first be wrapped
    /// with the [`Box::from_raw_in`] function producing a `Box`. This `Box` can
    /// then be dropped which will properly destroy `T` and release the
    /// allocated memory.
    ///
    /// Note: this is an associated function, which means that you have to call
    /// it as `Box::leak(b)` instead of `b.leak()`. This is so that there is no
    /// conflict with a method on the inner type.
    ///
    /// # Examples
    ///
    /// Simple usage:
    ///
    /// ```
    /// # #[cfg(not(miri))]
    /// # fn main() -> Result<(), rune::alloc::Error> {
    /// use rune::alloc::Box;
    ///
    /// let x = Box::try_new(41)?;
    /// let static_ref: &'static mut usize = Box::leak(x);
    /// *static_ref += 1;
    /// assert_eq!(*static_ref, 42);
    /// # Ok(())
    /// # }
    /// # #[cfg(miri)] fn main() {}
    /// ```
    ///
    /// Unsized data:
    ///
    /// ```
    /// # #[cfg(not(miri))]
    /// # fn main() -> Result<(), rune::alloc::Error> {
    /// use rune::alloc::{try_vec, Box};
    ///
    /// let x = try_vec![1, 2, 3].try_into_boxed_slice()?;
    /// let static_ref = Box::leak(x);
    /// static_ref[0] = 4;
    /// assert_eq!(*static_ref, [4, 2, 3]);
    /// # Ok(())
    /// # }
    /// # #[cfg(miri)] fn main() {}
    /// ```
    #[inline]
    pub fn leak<'a>(b: Self) -> &'a mut T
    where
        A: 'a,
    {
        unsafe { &mut *mem::ManuallyDrop::new(b).ptr.as_ptr() }
    }

    /// Converts a `Box<T>` into a `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then
    /// `*boxed` will be pinned in memory and unable to be moved.
    ///
    /// This conversion does not allocate on the heap and happens in place.
    ///
    /// This is also available via [`From`].
    ///
    /// Constructing and pinning a `Box` with <code>Box::into_pin([Box::try?new]\(x))</code>
    /// can also be written more concisely using <code>[Box::try?pin]\(x)</code>.
    /// This `into_pin` method is useful if you already have a `Box<T>`, or you are
    /// constructing a (pinned) `Box` in a different way than with [`Box::try_new`].
    ///
    /// # Notes
    ///
    /// It's not recommended that crates add an impl like `From<Box<T>> for Pin<T>`,
    /// as it'll introduce an ambiguity when calling `Pin::from`.
    /// A demonstration of such a poor impl is shown below.
    ///
    /// ```compile_fail
    /// # use core::pin::Pin;
    /// use rune::alloc::Box;
    ///
    /// struct Foo; // A type defined in this crate.
    /// impl From<Box<()>> for Pin<Foo> {
    ///     fn from(_: Box<()>) -> Pin<Foo> {
    ///         Pin::new(Foo)
    ///     }
    /// }
    ///
    /// let foo = Box::try_new(())?;
    /// let bar = Pin::from(foo);
    /// # Ok::<_, rune::alloc::Error>(())
    /// ```
    pub fn into_pin(boxed: Self) -> Pin<Self>
    where
        A: 'static,
    {
        // It's not possible to move or replace the insides of a `Pin<Box<T>>`
        // when `T: !Unpin`, so it's safe to pin it directly without any
        // additional requirements.
        unsafe { Pin::new_unchecked(boxed) }
    }

    /// Constructs a box from a raw pointer in the given allocator.
    ///
    /// After calling this function, the raw pointer is owned by the resulting
    /// `Box`. Specifically, the `Box` destructor will call the destructor of
    /// `T` and free the allocated memory. For this to be safe, the memory must
    /// have been allocated in accordance with the [memory layout] used by `Box`
    /// .
    ///
    /// # Safety
    ///
    /// This function is unsafe because improper use may lead to memory
    /// problems. For example, a double-free may occur if the function is called
    /// twice on the same raw pointer.
    ///
    /// # Examples
    ///
    /// Recreate a `Box` which was previously converted to a raw pointer using
    /// [`Box::into_raw_with_allocator`]:
    ///
    /// ```
    /// use rune::alloc::Box;
    /// use rune::alloc::alloc::Global;
    ///
    /// let x = Box::try_new_in(5, Global)?;
    /// let (ptr, alloc) = Box::into_raw_with_allocator(x);
    /// let x = unsafe { Box::from_raw_in(ptr, alloc) };
    /// # Ok::<_, rune::alloc::Error>(())
    /// ```
    ///
    /// Manually create a `Box` from scratch by using the system allocator:
    ///
    /// ```
    /// use core::alloc::Layout;
    ///
    /// use rune::alloc::Box;
    /// use rune::alloc::alloc::{Allocator, Global};
    ///
    /// unsafe {
    ///     let ptr = Global.allocate(Layout::new::<i32>())?.as_ptr() as *mut i32;
    ///     // In general .write is required to avoid attempting to destruct
    ///     // the (uninitialized) previous contents of `ptr`, though for this
    ///     // simple example `*ptr = 5` would have worked as well.
    ///     ptr.write(5);
    ///     let x = Box::from_raw_in(ptr, Global);
    /// }
    /// # Ok::<_, rune::alloc::Error>(())
    /// ```
    ///
    /// [memory layout]: self#memory-layout
    /// [`Layout`]: crate::Layout
    #[inline]
    pub unsafe fn from_raw_in(raw: *mut T, alloc: A) -> Self {
        Self {
            ptr: unsafe { Unique::new_unchecked(raw) },
            alloc,
        }
    }

    /// Consumes the `Box`, returning a wrapped raw pointer and the allocator.
    ///
    /// The pointer will be properly aligned and non-null.
    ///
    /// After calling this function, the caller is responsible for the
    /// memory previously managed by the `Box`. In particular, the
    /// caller should properly destroy `T` and release the memory, taking
    /// into account the [memory layout] used by `Box`. The easiest way to
    /// do this is to convert the raw pointer back into a `Box` with the
    /// [`Box::from_raw_in`] function, allowing the `Box` destructor to perform
    /// the cleanup.
    ///
    /// Note: this is an associated function, which means that you have
    /// to call it as `Box::into_raw_with_allocator(b)` instead of `b.into_raw_with_allocator()`. This
    /// is so that there is no conflict with a method on the inner type.
    ///
    /// # Examples
    ///
    /// Converting the raw pointer back into a `Box` with [`Box::from_raw_in`]
    /// for automatic cleanup:
    ///
    /// ```
    /// use rune::alloc::{Box, String};
    /// use rune::alloc::alloc::Global;
    ///
    /// let x = Box::try_new_in(String::try_from("Hello")?, Global)?;
    /// let (ptr, alloc) = Box::into_raw_with_allocator(x);
    /// let x = unsafe { Box::from_raw_in(ptr, alloc) };
    /// # Ok::<_, rune::alloc::Error>(())
    /// ```
    ///
    /// Manual cleanup by explicitly running the destructor and deallocating the
    /// memory:
    ///
    /// ```
    /// use core::alloc::Layout;
    /// use core::ptr::{self, NonNull};
    ///
    /// use rune::alloc::{Box, String};
    /// use rune::alloc::alloc::{Allocator, Global};
    ///
    /// let x = Box::try_new_in(String::try_from("Hello")?, Global)?;
    ///
    /// let (ptr, alloc) = Box::into_raw_with_allocator(x);
    ///
    /// unsafe {
    ///     ptr::drop_in_place(ptr);
    ///     let non_null = NonNull::new_unchecked(ptr);
    ///     alloc.deallocate(non_null.cast(), Layout::new::<String>());
    /// }
    /// # Ok::<_, rune::alloc::Error>(())
    /// ```
    ///
    /// [memory layout]: self#memory-layout
    #[inline]
    pub fn into_raw_with_allocator(b: Self) -> (*mut T, A) {
        let leaked = mem::ManuallyDrop::new(b);
        // SAFETY: We prevent the alloc field from being dropped, so we can
        // safely smuggle it out.
        let alloc = unsafe { ptr::read(&leaked.alloc) };
        (leaked.ptr.as_ptr(), alloc)
    }
}

impl<T, A: Allocator> Box<mem::MaybeUninit<T>, A> {
    /// Converts to `Box<T, A>`.
    ///
    /// # Safety
    ///
    /// As with [`MaybeUninit::assume_init`],
    /// it is up to the caller to guarantee that the value
    /// really is in an initialized state.
    /// Calling this when the content is not yet fully initialized
    /// causes immediate undefined behavior.
    ///
    /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
    ///
    /// # Examples
    ///
    /// ```
    /// use rune::alloc::Box;
    /// use rune::alloc::alloc::Global;
    ///
    /// let mut five = Box::<u32>::try_new_uninit_in(Global)?;
    ///
    /// let five: Box<u32> = unsafe {
    ///     // Deferred initialization:
    ///     five.as_mut_ptr().write(5);
    ///
    ///     five.assume_init()
    /// };
    ///
    /// assert_eq!(*five, 5);
    /// # Ok::<_, rune::alloc::Error>(())
    /// ```
    #[inline]
    pub unsafe fn assume_init(self) -> Box<T, A> {
        let (raw, alloc) = Box::into_raw_with_allocator(self);
        unsafe { Box::from_raw_in(raw as *mut T, alloc) }
    }
}

impl<T, A: Allocator> Box<[T], A> {
    /// Constructs a new boxed slice with uninitialized contents. Returns an error if
    /// the allocation fails
    ///
    /// # Examples
    ///
    /// ```
    /// use rune::alloc::Box;
    /// use rune::alloc::alloc::Global;
    ///
    /// let mut values = Box::<[u32]>::try_new_uninit_slice_in(3, Global)?;
    ///
    /// let values = unsafe {
    ///     // Deferred initialization:
    ///     values[0].as_mut_ptr().write(1);
    ///     values[1].as_mut_ptr().write(2);
    ///     values[2].as_mut_ptr().write(3);
    ///     values.assume_init()
    /// };
    ///
    /// assert_eq!(*values, [1, 2, 3]);
    /// # Ok::<_, rune::alloc::Error>(())
    /// ```
    #[inline]
    pub fn try_new_uninit_slice_in(
        len: usize,
        alloc: A,
    ) -> Result<Box<[mem::MaybeUninit<T>], A>, Error> {
        unsafe {
            let layout = match Layout::array::<mem::MaybeUninit<T>>(len) {
                Ok(l) => l,
                Err(_) => return Err(Error::LayoutError),
            };
            let ptr = alloc.allocate(layout)?;
            Ok(RawVec::from_raw_parts_in(ptr.as_ptr() as *mut _, len, alloc).into_box(len))
        }
    }
}

impl<T, A: Allocator> Box<[mem::MaybeUninit<T>], A> {
    /// Converts to `Box<[T], A>`.
    ///
    /// # Safety
    ///
    /// As with [`MaybeUninit::assume_init`],
    /// it is up to the caller to guarantee that the values
    /// really are in an initialized state.
    /// Calling this when the content is not yet fully initialized
    /// causes immediate undefined behavior.
    ///
    /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
    ///
    /// # Examples
    ///
    /// ```
    /// use rune::alloc::Box;
    /// use rune::alloc::alloc::Global;
    ///
    /// let mut values = Box::<[u32]>::try_new_uninit_slice_in(3, Global)?;
    ///
    /// let values = unsafe {
    ///     // Deferred initialization:
    ///     values[0].as_mut_ptr().write(1);
    ///     values[1].as_mut_ptr().write(2);
    ///     values[2].as_mut_ptr().write(3);
    ///     values.assume_init()
    /// };
    ///
    /// assert_eq!(*values, [1, 2, 3]);
    /// # Ok::<_, rune::alloc::Error>(())
    /// ```
    #[inline]
    pub unsafe fn assume_init(self) -> Box<[T], A> {
        let (raw, alloc) = Box::into_raw_with_allocator(self);
        unsafe { Box::from_raw_in(raw as *mut [T], alloc) }
    }
}

impl<T, A: Allocator + Clone> TryClone for Box<T, A>
where
    T: TryClone,
{
    #[inline]
    fn try_clone(&self) -> Result<Self, Error> {
        let value = (**self).try_clone()?;
        let alloc = self.alloc.clone();
        Ok(Box::try_new_in(value, alloc)?)
    }
}

impl<T, A: Allocator + Clone> TryClone for Box<[T], A>
where
    T: TryClone,
{
    #[inline]
    fn try_clone(&self) -> Result<Self, Error> {
        let alloc = self.alloc.clone();
        let vec = crate::slice::to_vec(self, alloc)?;
        vec.try_into_boxed_slice()
    }
}

impl<A: Allocator + Clone> TryClone for Box<str, A> {
    #[inline]
    fn try_clone(&self) -> Result<Self, Error> {
        let alloc = self.alloc.clone();
        Box::try_from_string_in(self.as_ref(), alloc)
    }
}

impl<T: ?Sized, A: Allocator> Borrow<T> for Box<T, A> {
    fn borrow(&self) -> &T {
        self
    }
}

impl<T: ?Sized, A: Allocator> BorrowMut<T> for Box<T, A> {
    fn borrow_mut(&mut self) -> &mut T {
        self
    }
}

impl<T: ?Sized, A: Allocator> AsRef<T> for Box<T, A> {
    fn as_ref(&self) -> &T {
        self
    }
}

impl<T: ?Sized, A: Allocator> AsMut<T> for Box<T, A> {
    fn as_mut(&mut self) -> &mut T {
        self
    }
}

/* Nota bene
 *
 *  We could have chosen not to add this impl, and instead have written a
 *  function of Pin<Box<T>> to Pin<T>. Such a function would not be sound,
 *  because Box<T> implements Unpin even when T does not, as a result of
 *  this impl.
 *
 *  We chose this API instead of the alternative for a few reasons:
 *      - Logically, it is helpful to understand pinning in regard to the
 *        memory region being pointed to. For this reason none of the
 *        standard library pointer types support projecting through a pin
 *        (Box<T> is the only pointer type in std for which this would be
 *        safe.)
 *      - It is in practice very useful to have Box<T> be unconditionally
 *        Unpin because of trait objects, for which the structural auto
 *        trait functionality does not apply (e.g., Box<dyn Foo> would
 *        otherwise not be Unpin).
 *
 *  Another type with the same semantics as Box but only a conditional
 *  implementation of `Unpin` (where `T: Unpin`) would be valid/safe, and
 *  could have a method to project a Pin<T> from it.
 */
impl<T: ?Sized, A: Allocator> Unpin for Box<T, A> where A: 'static {}

impl<T: ?Sized, A: Allocator> Deref for Box<T, A> {
    type Target = T;

    #[inline]
    fn deref(&self) -> &T {
        unsafe { self.ptr.as_ref() }
    }
}

impl<T: ?Sized, A: Allocator> DerefMut for Box<T, A> {
    #[inline]
    fn deref_mut(&mut self) -> &mut T {
        unsafe { self.ptr.as_mut() }
    }
}

impl<T: ?Sized, A: Allocator> Drop for Box<T, A> {
    #[inline]
    fn drop(&mut self) {
        unsafe {
            let ptr = self.ptr;

            if mem::needs_drop::<T>() {
                ptr::drop_in_place(ptr.as_ptr());
            }

            let layout = for_value_raw(ptr.as_ptr());

            if layout.size() != 0 {
                self.alloc.deallocate(From::from(ptr.cast()), layout);
            }
        }
    }
}

impl Default for Box<str, Global> {
    fn default() -> Self {
        // SAFETY: The layout of `Box<[u8]>` is the same as `Box<str>`.
        unsafe {
            let b = Box::<[u8]>::default();
            let (ptr, alloc) = Box::into_raw_with_allocator(b);
            Box::from_raw_in(ptr as *mut str, alloc)
        }
    }
}

impl<T> Default for Box<[T], Global> {
    fn default() -> Self {
        Box {
            ptr: Unique::dangling_empty_slice(),
            alloc: Global,
        }
    }
}

impl<T: ?Sized, A: Allocator> fmt::Display for Box<T, A>
where
    T: fmt::Display,
{
    #[inline]
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        (**self).fmt(f)
    }
}

impl<T: ?Sized, A: Allocator> fmt::Debug for Box<T, A>
where
    T: fmt::Debug,
{
    #[inline]
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        (**self).fmt(f)
    }
}

impl<A: Allocator> From<Box<str, A>> for Box<[u8], A> {
    fn from(value: Box<str, A>) -> Self {
        // SAFETY: `[u8]` is layout compatible with `str` and there are no
        // checks needed.
        unsafe {
            let (ptr, alloc) = Box::into_raw_with_allocator(value);
            Box::from_raw_in(ptr as *mut [u8], alloc)
        }
    }
}

#[cfg(feature = "alloc")]
impl<T> TryFrom<::rust_alloc::boxed::Box<[T]>> for Box<[T]> {
    type Error = Error;

    #[inline]
    fn try_from(values: ::rust_alloc::boxed::Box<[T]>) -> Result<Self, Error> {
        let mut vec = Vec::try_with_capacity(values.len())?;

        for value in ::rust_alloc::vec::Vec::from(values) {
            vec.try_push(value)?;
        }

        vec.try_into_boxed_slice()
    }
}

impl<T, const N: usize> TryFrom<[T; N]> for Box<[T]> {
    type Error = Error;

    #[inline]
    fn try_from(values: [T; N]) -> Result<Self, Error> {
        let mut vec = Vec::try_with_capacity(values.len())?;

        for value in values {
            vec.try_push(value)?;
        }

        vec.try_into_boxed_slice()
    }
}

/// Casts a boxed slice to a boxed array.
///
/// # Safety
///
/// `boxed_slice.len()` must be exactly `N`.
unsafe fn boxed_slice_as_array_unchecked<T, A: Allocator, const N: usize>(
    boxed_slice: Box<[T], A>,
) -> Box<[T; N], A> {
    debug_assert_eq!(boxed_slice.len(), N);

    let (ptr, alloc) = Box::into_raw_with_allocator(boxed_slice);
    // SAFETY: Pointer and allocator came from an existing box,
    // and our safety condition requires that the length is exactly `N`
    unsafe { Box::from_raw_in(ptr as *mut [T; N], alloc) }
}

impl<T, const N: usize> TryFrom<Box<[T]>> for Box<[T; N]> {
    type Error = Box<[T]>;

    /// Attempts to convert a `Box<[T]>` into a `Box<[T; N]>`.
    ///
    /// The conversion occurs in-place and does not require a
    /// new memory allocation.
    ///
    /// # Errors
    ///
    /// Returns the old `Box<[T]>` in the `Err` variant if
    /// `boxed_slice.len()` does not equal `N`.
    fn try_from(boxed_slice: Box<[T]>) -> Result<Self, Self::Error> {
        if boxed_slice.len() == N {
            Ok(unsafe { boxed_slice_as_array_unchecked(boxed_slice) })
        } else {
            Err(boxed_slice)
        }
    }
}

impl<T, A: Allocator> TryFrom<Vec<T, A>> for Box<[T], A> {
    type Error = Error;

    #[inline]
    fn try_from(vec: Vec<T, A>) -> Result<Self, Error> {
        vec.try_into_boxed_slice()
    }
}

impl<A: Allocator> Box<[u8], A> {
    pub(crate) fn try_from_bytes_in(bytes: &[u8], alloc: A) -> Result<Self, Error> {
        let mut vec = Vec::<u8, A>::try_with_capacity_in(bytes.len(), alloc)?;

        unsafe {
            ptr::copy_nonoverlapping(bytes.as_ptr(), vec.as_mut_ptr(), bytes.len());
            vec.set_len(bytes.len());
            vec.try_into_boxed_slice()
        }
    }
}

impl<A: Allocator> Box<str, A> {
    pub(crate) fn try_from_string_in(string: &str, alloc: A) -> Result<Self, Error> {
        unsafe {
            let b = Box::try_from_bytes_in(string.as_bytes(), alloc)?;
            let (raw, alloc) = Box::into_raw_with_allocator(b);
            Ok(Box::from_raw_in(raw as *mut str, alloc))
        }
    }
}

impl<A: Allocator> Box<Path, A> {
    pub(crate) fn try_from_path_in(path: &Path, alloc: A) -> Result<Self, Error> {
        unsafe {
            const _: () = assert!(mem::size_of::<&Path>() == mem::size_of::<&[u8]>());
            // Replace with path.as_os_str().as_encoded_bytes() once that is
            // stable.
            let bytes = &*(path as *const _ as *const [u8]);
            let b = Box::try_from_bytes_in(bytes, alloc)?;
            let (raw, alloc) = Box::into_raw_with_allocator(b);
            Ok(Box::from_raw_in(raw as *mut Path, alloc))
        }
    }
}

impl<A: Allocator + Clone> TryClone for Box<Path, A> {
    #[inline]
    fn try_clone(&self) -> Result<Self, Error> {
        let alloc = self.alloc.clone();
        Box::try_from_path_in(self.as_ref(), alloc)
    }
}

impl TryFrom<&str> for Box<str> {
    type Error = Error;

    /// Converts a `&str` into a `Box<str>`.
    ///
    /// # Examples
    ///
    /// ```
    /// use rune::alloc::Box;
    ///
    /// let s: Box<str> = Box::try_from("Hello World")?;
    /// assert_eq!(s.as_ref(), "Hello World");
    /// # Ok::<_, rune::alloc::Error>(())
    /// ```
    #[inline]
    fn try_from(values: &str) -> Result<Self, Error> {
        Box::try_from_string_in(values, Global)
    }
}

#[cfg(feature = "alloc")]
impl TryFrom<::rust_alloc::string::String> for Box<str> {
    type Error = Error;

    /// Converts a std `String` into a `Box<str>`.
    ///
    /// # Examples
    ///
    /// ```
    /// use rune::alloc::Box;
    ///
    /// let s = String::from("Hello World");
    /// let s: Box<str> = Box::try_from(s)?;
    /// assert_eq!(s.as_ref(), "Hello World");
    /// # Ok::<_, rune::alloc::Error>(())
    /// ```
    #[inline]
    fn try_from(string: ::rust_alloc::string::String) -> Result<Self, Error> {
        Box::from_std(string.into_boxed_str())
    }
}

impl TryFrom<&[u8]> for Box<[u8]> {
    type Error = Error;

    /// Converts a `&[u8]` into a `Box<[u8]>`.
    ///
    /// # Examples
    ///
    /// ```
    /// use rune::alloc::Box;
    ///
    /// let s: Box<[u8]> = Box::try_from(&b"Hello World"[..])?;
    /// assert_eq!(s.as_ref(), b"Hello World");
    /// # Ok::<_, rune::alloc::Error>(())
    /// ```
    #[inline]
    fn try_from(values: &[u8]) -> Result<Self, Error> {
        Box::try_from_bytes_in(values, Global)
    }
}

impl TryFrom<&Path> for Box<Path> {
    type Error = Error;

    /// Converts a `&[u8]` into a `Box<[u8]>`.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::path::Path;
    /// use rune::alloc::Box;
    ///
    /// let path = Path::new("foo/bar");
    ///
    /// let s: Box<Path> = Box::try_from(path)?;
    /// assert_eq!(s.as_ref(), Path::new("foo/bar"));
    /// # Ok::<_, rune::alloc::Error>(())
    /// ```
    #[inline]
    fn try_from(path: &Path) -> Result<Self, Error> {
        Box::try_from_path_in(path, Global)
    }
}

impl<T, A: Allocator> TryFromIteratorIn<T, A> for Box<[T], A> {
    fn try_from_iter_in<I>(iter: I, alloc: A) -> Result<Self, Error>
    where
        I: IntoIterator<Item = T>,
    {
        Vec::<T, A>::try_from_iter_in(iter, alloc)?.try_into_boxed_slice()
    }
}

unsafe fn for_value_raw<T: ?Sized>(t: *const T) -> Layout {
    // SAFETY: we pass along the prerequisites of these functions to the caller
    // TODO: Use mem::{size_of_val_raw, align_of_val_raw} when they become
    // stable, for now we privately know that this can safely be turned into a
    // reference since it's only used while dropping an owned value of type `T`.
    let (size, align) = (mem::size_of_val(&*t), mem::align_of_val(&*t));
    // SAFETY: see rationale in `new` for why this is using the unsafe variant
    Layout::from_size_align_unchecked(size, align)
}

impl<T: ?Sized, A: Allocator> Hash for Box<T, A>
where
    T: Hash,
{
    #[inline]
    fn hash<H: Hasher>(&self, state: &mut H) {
        (**self).hash(state);
    }
}

impl<T: ?Sized, A: Allocator> From<Box<T, A>> for Pin<Box<T, A>>
where
    A: 'static,
{
    /// Converts a `Box<T>` into a `Pin<Box<T>>`. If `T` does not implement
    /// [`Unpin`], then `*boxed` will be pinned in memory and unable to be
    /// moved.
    ///
    /// This conversion does not allocate on the heap and happens in place.
    ///
    /// This is also available via [`Box::into_pin`].
    ///
    /// Constructing and pinning a `Box` with
    /// <code><Pin<Box\<T>>>::from([Box::try?new]\(x))</code> can also be
    /// written more concisely using <code>[Box::try?pin]\(x)</code>. This
    /// `From` implementation is useful if you already have a `Box<T>`, or you
    /// are constructing a (pinned) `Box` in a different way than with
    /// [`Box::try_new`].
    fn from(boxed: Box<T, A>) -> Self {
        Box::into_pin(boxed)
    }
}

impl<T: ?Sized, A: Allocator> PartialEq for Box<T, A>
where
    T: PartialEq,
{
    #[inline]
    fn eq(&self, other: &Self) -> bool {
        (**self).eq(other)
    }
}

impl<T: ?Sized, A: Allocator> Eq for Box<T, A> where T: Eq {}

impl<T: ?Sized, A: Allocator> PartialOrd for Box<T, A>
where
    T: PartialOrd,
{
    #[inline]
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        (**self).partial_cmp(other)
    }
}

impl<T: ?Sized, A: Allocator> Ord for Box<T, A>
where
    T: Ord,
{
    #[inline]
    fn cmp(&self, other: &Self) -> Ordering {
        (**self).cmp(other)
    }
}