syntree/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
//! [<img alt="github" src="https://img.shields.io/badge/github-udoprog/syntree-8da0cb?style=for-the-badge&logo=github" height="20">](https://github.com/udoprog/syntree)
//! [<img alt="crates.io" src="https://img.shields.io/crates/v/syntree.svg?style=for-the-badge&color=fc8d62&logo=rust" height="20">](https://crates.io/crates/syntree)
//! [<img alt="docs.rs" src="https://img.shields.io/badge/docs.rs-syntree-66c2a5?style=for-the-badge&logoColor=white&logo=" height="20">](https://docs.rs/syntree)
//!
//! A memory efficient syntax tree.
//!
//! This crate provides a tree structure which always is contiguously stored and
//! manipulated in memory. It provides similar APIs as [`rowan`] and is intended
//! to be an efficient replacement for it (read more below).
//!
//! Anything can be stored in the tree as long as it implements `Copy`.
//!
//! <br>
//!
//! ## Usage
//!
//! Add `syntree` to your crate:
//!
//! ```toml
//! syntree = "0.18.0"
//! ```
//!
//! If you want a complete sample for how `syntree` can be used for parsing, see
//! the [calculator example][calculator].
//!
//! <br>
//!
//! ## Syntax trees
//!
//! This crate provides a way to efficiently model [abstract syntax trees]. The
//! nodes of the tree are typically represented by variants in an enum, but
//! [could be whatever you want][any-syntax].
//!
//! Each tree consists of *nodes* and *tokens*. Siblings are intermediary
//! elements in the tree which encapsulate zero or more other nodes or tokens,
//! while tokens are leaf elements representing exact source locations.
//!
//! An example tree for the simple expression `256 / 2 + 64 * 2` could be
//! represented like this:
//!
//! ```text
//! Operation@0..16
//! Number@0..3
//! Number@0..3 "256"
//! Whitespace@3..4 " "
//! Operator@4..5
//! Div@4..5 "/"
//! Whitespace@5..6 " "
//! Number@6..7
//! Number@6..7 "2"
//! Whitespace@7..8 " "
//! Operator@8..9
//! Plus@8..9 "+"
//! Whitespace@9..10 " "
//! Operation@10..16
//! Number@10..12
//! Number@10..12 "64"
//! Whitespace@12..13 " "
//! Operator@13..14
//! Mul@13..14 "*"
//! Whitespace@14..15 " "
//! Number@15..16
//! Number@15..16 "2"
//! ```
//!
//! > Try it for yourself with:
//! >
//! > ```sh
//! > cargo run --example calculator -- "256 / 2 + 64 * 2"
//! > ```
//!
//! The primary difference between `syntree` and [`rowan`] is that *we don't
//! store the original source* in the syntax tree. Instead, the user of the
//! library is responsible for providing it as necessary. Like when calling
//! [`print_with_source`].
//!
//! The API for constructing a syntax tree is provided through [`Builder`] which
//! implements streaming builder methods. Internally the builder is represented
//! as a contiguous slab of memory. Once a tree is built the structure of the
//! tree can be queried through the [`Tree`] type.
//!
//! Note that [`syntree::tree!`] is only a helper which simplifies building
//! trees for examples. It corresponds exactly to performing [`open`],
//! [`close`], and [`token`] calls on [`Builder`] as specified.
//!
//! ```
//! use syntree::{Builder, Span};
//!
//! #[derive(Debug, Clone, Copy, PartialEq, Eq)]
//! enum Syntax {
//! Number,
//! Lit,
//! Nested,
//! }
//!
//! use Syntax::*;
//!
//! let mut tree = Builder::new();
//!
//! tree.open(Number)?;
//! tree.token(Lit, 1)?;
//! tree.token(Lit, 3)?;
//!
//! tree.open(Nested)?;
//! tree.token(Lit, 1)?;
//! tree.close()?;
//!
//! tree.close()?;
//!
//! let tree = tree.build()?;
//!
//! let expected = syntree::tree! {
//! Number => {
//! (Lit, 1),
//! (Lit, 3),
//! Nested => {
//! (Lit, 1)
//! }
//! }
//! };
//!
//! assert_eq!(tree, expected);
//!
//! let number = tree.first().ok_or("missing number")?;
//! assert_eq!(number.span(), Span::new(0, 5));
//! # Ok::<_, Box<dyn core::error::Error>>(())
//! ```
//!
//! Note how the resulting [`Span`] for `Number` corresponds to the full span of
//! its `Lit` children. Including the ones within `Nested`.
//!
//! Trees are usually constructed by parsing an input. This library encourages
//! the use of a [handwritten pratt parser][pratt]. See the [calculator
//! example][calculator] for a complete use case.
//!
//! <br>
//!
//! ## Compact or empty spans
//!
//! Spans by default uses `u32`-based indexes and `usize`-based pointers, this
//! can be changed from its default using the [`Builder::new_with`] constructor:
//!
//! ```
//! use syntree::{Builder, Span, Tree};
//!
//! syntree::flavor! {
//! struct FlavorU16 {
//! type Index = usize;
//! type Width = u16;
//! }
//! };
//!
//! syntree::flavor! {
//! struct FlavorU32 {
//! type Index = usize;
//! type Width = u32;
//! }
//! };
//!
//! let mut tree = Builder::<_, FlavorU16>::new_with();
//!
//! tree.open("root")?;
//! tree.open("child")?;
//! tree.token("token", 100)?;
//! tree.close()?;
//! tree.open("child2")?;
//! tree.close()?;
//! tree.close()?;
//!
//! let tree = tree.build()?;
//!
//! let expected: Tree<_, FlavorU32> = syntree::tree_with! {
//! "root" => {
//! "child" => { ("token", 100) },
//! "child2" => {}
//! }
//! };
//!
//! assert_eq!(tree, expected);
//! assert_eq!(tree.span(), Span::new(0, 100));
//! # Ok::<_, Box<dyn core::error::Error>>(())
//! ```
//!
//! Combined with [`Empty`], this allows for building trees without spans, if
//! that is something you want to do:
//!
//! ```
//! use syntree::{Builder, Empty, EmptyVec, TreeIndex, Tree};
//!
//! syntree::flavor! {
//! struct FlavorEmpty {
//! type Index = Empty;
//! type Indexes = EmptyVec<TreeIndex<Self>>;
//! }
//! };
//!
//! let mut tree = Builder::<_, FlavorEmpty>::new_with();
//!
//! tree.open("root")?;
//! tree.open("child")?;
//! tree.token("token", Empty)?;
//! tree.close()?;
//! tree.open("child2")?;
//! tree.close()?;
//! tree.close()?;
//!
//! let tree = tree.build()?;
//!
//! let expected: Tree<_, FlavorEmpty> = syntree::tree_with! {
//! "root" => {
//! "child" => { "token" },
//! "child2" => {}
//! }
//! };
//!
//! assert_eq!(tree, expected);
//! assert!(tree.span().is_empty());
//! # Ok::<_, Box<dyn core::error::Error>>(())
//! ```
//!
//! <br>
//!
//! ## Why not `rowan`?
//!
//! I love [`rowan`]. It's the reason why I started this project. But this crate
//! still exists for a few philosophical differences that would be hard to
//! reconcile directly in `rowan`.
//!
//! `rowan` only supports adding types which in some way can be coerced into an
//! `repr(u16)` as part of the syntax tree. I think this decision is reasonable,
//! but it precludes you from designing trees which contain anything else other
//! than source references without having to perform some form of indirect
//! lookup. This is something needed in order to move [Rune] to lossless syntax
//! trees (see [the representation of `Kind::Str` variant][kind-str]).
//!
//! To exemplify this scenario consider the following syntax:
//!
//! ```
//! #[derive(Debug, Clone, Copy)]
//! enum Syntax {
//! /// A string referenced somewhere else using the provided ID.
//! Synthetic(usize),
//! /// A literal string from the source.
//! Lit,
//! /// Whitespace.
//! Whitespace,
//! /// A lexer error.
//! Error,
//! }
//! ```
//!
//! You can see the [full `synthetic_strings` example][synthetic_strings] for
//! how this might be used. But not only can the `Synthetic` token correspond to
//! some source location (as it should because it was expanded from one!). It
//! also directly represents that it's *not* a literal string referencing a
//! source location.
//!
//! In [Rune] this became needed once we started [expanding
//! macros][rune-macros]. Because macros expand to things which do not reference
//! source locations so we need some other mechanism to include what the tokens
//! represent in the syntax trees.
//!
//! You can try a *very* simple lex-time variable expander in the
//! [`synthetic_strings` example][synthetic_strings]:
//!
//! ```sh
//! cargo run --example synthetic_strings -- "Hello $world"
//! ```
//!
//! Which would output:
//!
//! ```text
//! Tree:
//! Lit@0..5 "Hello"
//! Whitespace@5..6 " "
//! Synthetic(0)@6..12 "$world"
//! Eval:
//! 0 = "Hello"
//! 1 = "Earth"
//! ```
//!
//! So in essence `syntree` doesn't believe you need to store strings in the
//! tree itself. Even if you want to deduplicate string storage. All of that can
//! be done on the side and encoded into the syntax tree as you wish.
//!
//! <br>
//!
//! ### Errors instead of panics
//!
//! Another point where this crate differs is that we rely on propagating a
//! [`Error`] during tree construction if the API is used incorrectly
//! *instead* of panicking.
//!
//! While on the surface this might seem like a minor difference in opinion on
//! whether programming mistakes should be errors or not. In my experience
//! parsers tend to be part of a crate in a larger project. And errors triggered
//! by edge cases in user-provided input that once encountered can usually be
//! avoided.
//!
//! So let's say [Rune] is embedded in [OxidizeBot] and there's a piece of code
//! in a user-provided script which triggers a bug in the rune compiler. Which
//! in turn causes an illegal tree to be constructed. If tree construction
//! simply panics, the whole bot will go down. But if we instead propagate an
//! error this would have to be handled in [OxidizeBot] which could panic if it
//! wanted to. In this instance it's simply more appropriate to log the error
//! and unload the script (and hopefully receive a bug report!) than to crash
//! the bot.
//!
//! Rust has great diagnostics for indicating that results should be handled,
//! and while it is [more awkward to deal with results][syntree-math] than [to
//! simply panic][rowan-math] I believe that the end result is more robust
//! software.
//!
//! <br>
//!
//! ## Performance and memory use
//!
//! The only goal in terms of performance is to be as performant as `rowan`. And
//! cursory testing shows `syntree` to be a bit faster on synthetic workloads
//! which can probably be solely attributed to storing and manipulating the
//! entire tree in a single contiguous memory region. This might or might not
//! change in the future, depending on if the needs for `syntree` changes. While
//! performance is important, it *is not* a primary focus.
//!
//! I also expect (but haven't verified) that `syntree` could end up having a
//! similarly low memory profile as `rowan` which performs node deduplication.
//! The one caveat is that it depends on how the original source is stored and
//! queried. Something which `rowan` solves for you, but `syntree` leaves as an
//! exercise to the reader.
//!
//! [`Builder::new_with`]: https://docs.rs/syntree/latest/syntree/struct.Builder.html#method.new_with
//! [`Builder`]: https://docs.rs/syntree/latest/syntree/struct.Builder.html
//! [`close`]: https://docs.rs/syntree/latest/syntree/struct.Builder.html#method.close
//! [`Empty`]: https://docs.rs/syntree/latest/syntree/struct.Empty.html
//! [`Error`]: https://docs.rs/syntree/latest/syntree/enum.Error.html
//! [`open`]: https://docs.rs/syntree/latest/syntree/struct.Builder.html#method.open
//! [`print_with_source`]: https://docs.rs/syntree/latest/syntree/print/fn.print_with_source.html
//! [`rowan`]: https://docs.rs/rowan/latest/rowan/
//! [`Span`]: https://docs.rs/syntree/latest/syntree/struct.Span.html
//! [`syntree::tree!`]: https://docs.rs/syntree/latest/syntree/macro.tree.html
//! [`token`]: https://docs.rs/syntree/latest/syntree/struct.Builder.html#method.token
//! [`Tree`]: https://docs.rs/syntree/latest/syntree/struct.Tree.html
//! [abstract syntax trees]: https://en.wikipedia.org/wiki/Abstract_syntax_tree
//! [any-syntax]: https://github.com/udoprog/syntree/blob/main/examples/iterator.rs
//! [calculator]: https://github.com/udoprog/syntree/blob/main/examples/calculator
//! [kind-str]: https://github.com/rune-rs/rune/blob/e97a32e/crates/rune/src/ast/generated.rs#L4359
//! [OxidizeBot]: https://github.com/udoprog/OxidizeBot
//! [pratt]: https://matklad.github.io/2020/04/13/simple-but-powerful-pratt-parsing.html
//! [rowan-math]: https://github.com/rust-analyzer/rowan/blob/master/examples/math.rs
//! [rune-macros]: https://github.com/rune-rs/rune/blob/main/crates/rune-modules/src/core.rs#L36
//! [Rune]: https://github.com/rune-rs/rune
//! [synthetic_strings]: https://github.com/udoprog/syntree/blob/main/examples/synthetic_strings.rs
//! [syntree-math]: https://github.com/udoprog/syntree/blob/main/examples/math.rs
#![deny(missing_docs)]
#![cfg_attr(docsrs, feature(doc_cfg))]
#![no_std]
extern crate alloc;
#[cfg(feature = "std")]
extern crate std;
#[macro_use]
mod macros;
mod builder;
#[cfg(feature = "std")]
pub mod edit;
mod empty;
mod error;
#[macro_use]
mod flavor;
mod index;
mod links;
pub mod node;
pub mod pointer;
pub mod print;
mod span;
mod tree;
#[doc(inline)]
pub use self::builder::{Builder, Checkpoint};
#[doc(inline)]
pub use self::empty::{Empty, EmptyVec};
#[doc(inline)]
pub use self::error::Error;
#[doc(inline)]
pub use self::flavor::{Flavor, FlavorDefault, Storage};
#[doc(inline)]
pub use self::index::{Index, Length, TreeIndex};
#[doc(inline)]
pub use self::node::node_impl::Node;
#[doc(inline)]
pub use self::pointer::{Pointer, Width};
#[doc(inline)]
pub use self::span::Span;
#[doc(inline)]
pub use self::tree::Tree;
#[doc(hidden)]
pub mod macro_support {
use crate::index::TreeIndex;
#[cfg(feature = "alloc")]
pub type Vec<T> = alloc::vec::Vec<T>;
#[cfg(not(feature = "alloc"))]
pub type Vec<T> = crate::empty::EmptyVec<T>;
pub type DefaultIndexes<F> = crate::macro_support::Vec<TreeIndex<F>>;
}