rune_alloc/hashbrown/raw/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
use core::alloc::Layout;
use core::iter::FusedIterator;
use core::marker::PhantomData;
use core::mem;
use core::mem::MaybeUninit;
use core::ptr::NonNull;
use core::{hint, ptr};

use crate::hashbrown::scopeguard::{guard, ScopeGuard};

use crate::alloc::{Allocator, Global, SizedTypeProperties};
use crate::clone::TryClone;
#[cfg(rune_nightly)]
use crate::clone::TryCopy;
use crate::error::{CustomError, Error};
// Branch prediction hint. This is currently only available on nightly but it
// consistently improves performance by 10-15%.
use crate::hint::{likely, unlikely};
use crate::ptr::invalid_mut;

#[cfg(test)]
use crate::testing::*;

use super::{EqFn, ErrorOrInsertSlot, HasherFn};

cfg_if! {
    // Use the SSE2 implementation if possible: it allows us to scan 16 buckets
    // at once instead of 8. We don't bother with AVX since it would require
    // runtime dispatch and wouldn't gain us much anyways: the probability of
    // finding a match drops off drastically after the first few buckets.
    //
    // I attempted an implementation on ARM using NEON instructions, but it
    // turns out that most NEON instructions have multi-cycle latency, which in
    // the end outweighs any gains over the generic implementation.
    if #[cfg(all(
        target_feature = "sse2",
        any(target_arch = "x86", target_arch = "x86_64"),
        not(miri)
    ))] {
        mod sse2;
        use sse2 as imp;
    } else if #[cfg(all(target_arch = "aarch64", target_feature = "neon"))] {
        mod neon;
        use neon as imp;
    } else {
        mod generic;
        use generic as imp;
    }
}

mod bitmask;

use self::bitmask::BitMaskIter;
use self::imp::Group;

#[inline]
unsafe fn offset_from<T>(to: *const T, from: *const T) -> usize {
    to.offset_from(from) as usize
}

/// Control byte value for an empty bucket.
const EMPTY: u8 = 0b1111_1111;

/// Control byte value for a deleted bucket.
const DELETED: u8 = 0b1000_0000;

/// Checks whether a control byte represents a full bucket (top bit is clear).
#[inline]
fn is_full(ctrl: u8) -> bool {
    ctrl & 0x80 == 0
}

/// Checks whether a control byte represents a special value (top bit is set).
#[inline]
fn is_special(ctrl: u8) -> bool {
    ctrl & 0x80 != 0
}

/// Checks whether a special control value is EMPTY (just check 1 bit).
#[inline]
fn special_is_empty(ctrl: u8) -> bool {
    debug_assert!(is_special(ctrl));
    ctrl & 0x01 != 0
}

/// Primary hash function, used to select the initial bucket to probe from.
#[inline]
#[allow(clippy::cast_possible_truncation)]
fn h1(hash: u64) -> usize {
    // On 32-bit platforms we simply ignore the higher hash bits.
    hash as usize
}

// Constant for h2 function that grabing the top 7 bits of the hash.
const MIN_HASH_LEN: usize = if mem::size_of::<usize>() < mem::size_of::<u64>() {
    mem::size_of::<usize>()
} else {
    mem::size_of::<u64>()
};

/// Secondary hash function, saved in the low 7 bits of the control byte.
#[inline]
#[allow(clippy::cast_possible_truncation)]
fn h2(hash: u64) -> u8 {
    // Grab the top 7 bits of the hash. While the hash is normally a full 64-bit
    // value, some hash functions (such as FxHash) produce a usize result
    // instead, which means that the top 32 bits are 0 on 32-bit platforms.
    // So we use MIN_HASH_LEN constant to handle this.
    let top7 = hash >> (MIN_HASH_LEN * 8 - 7);
    (top7 & 0x7f) as u8 // truncation
}

/// Probe sequence based on triangular numbers, which is guaranteed (since our
/// table size is a power of two) to visit every group of elements exactly once.
///
/// A triangular probe has us jump by 1 more group every time. So first we
/// jump by 1 group (meaning we just continue our linear scan), then 2 groups
/// (skipping over 1 group), then 3 groups (skipping over 2 groups), and so on.
///
/// Proof that the probe will visit every group in the table:
/// <https://fgiesen.wordpress.com/2015/02/22/triangular-numbers-mod-2n/>
struct ProbeSeq {
    pos: usize,
    stride: usize,
}

impl ProbeSeq {
    #[inline]
    fn move_next(&mut self, bucket_mask: usize) {
        // We should have found an empty bucket by now and ended the probe.
        debug_assert!(
            self.stride <= bucket_mask,
            "Went past end of probe sequence"
        );

        self.stride += Group::WIDTH;
        self.pos += self.stride;
        self.pos &= bucket_mask;
    }
}

/// Returns the number of buckets needed to hold the given number of items,
/// taking the maximum load factor into account.
///
/// Returns `None` if an overflow occurs.
// Workaround for emscripten bug emscripten-core/emscripten-fastcomp#258
#[cfg_attr(target_os = "emscripten", inline(never))]
#[cfg_attr(not(target_os = "emscripten"), inline)]
fn capacity_to_buckets(cap: usize) -> Option<usize> {
    debug_assert_ne!(cap, 0);

    // For small tables we require at least 1 empty bucket so that lookups are
    // guaranteed to terminate if an element doesn't exist in the table.
    if cap < 8 {
        // We don't bother with a table size of 2 buckets since that can only
        // hold a single element. Instead we skip directly to a 4 bucket table
        // which can hold 3 elements.
        return Some(if cap < 4 { 4 } else { 8 });
    }

    // Otherwise require 1/8 buckets to be empty (87.5% load)
    //
    // Be careful when modifying this, calculate_layout relies on the
    // overflow check here.
    let adjusted_cap = cap.checked_mul(8)? / 7;

    // Any overflows will have been caught by the checked_mul. Also, any
    // rounding errors from the division above will be cleaned up by
    // next_power_of_two (which can't overflow because of the previous division).
    Some(adjusted_cap.next_power_of_two())
}

/// Returns the maximum effective capacity for the given bucket mask, taking
/// the maximum load factor into account.
#[inline]
fn bucket_mask_to_capacity(bucket_mask: usize) -> usize {
    if bucket_mask < 8 {
        // For tables with 1/2/4/8 buckets, we always reserve one empty slot.
        // Keep in mind that the bucket mask is one less than the bucket count.
        bucket_mask
    } else {
        // For larger tables we reserve 12.5% of the slots as empty.
        ((bucket_mask + 1) / 8) * 7
    }
}

/// Helper which allows the max calculation for ctrl_align to be statically computed for each T
/// while keeping the rest of `calculate_layout_for` independent of `T`
#[derive(Copy, Clone)]
struct TableLayout {
    size: usize,
    ctrl_align: usize,
}

impl TableLayout {
    #[inline]
    const fn new<T>() -> Self {
        let layout = Layout::new::<T>();
        Self {
            size: layout.size(),
            ctrl_align: if layout.align() > Group::WIDTH {
                layout.align()
            } else {
                Group::WIDTH
            },
        }
    }

    #[inline]
    fn calculate_layout_for(self, buckets: usize) -> Option<(Layout, usize)> {
        debug_assert!(buckets.is_power_of_two());

        let TableLayout { size, ctrl_align } = self;
        // Manual layout calculation since Layout methods are not yet stable.
        let ctrl_offset =
            size.checked_mul(buckets)?.checked_add(ctrl_align - 1)? & !(ctrl_align - 1);
        let len = ctrl_offset.checked_add(buckets + Group::WIDTH)?;

        // We need an additional check to ensure that the allocation doesn't
        // exceed `isize::MAX` (https://github.com/rust-lang/rust/pull/95295).
        if len > isize::MAX as usize - (ctrl_align - 1) {
            return None;
        }

        Some((
            unsafe { Layout::from_size_align_unchecked(len, ctrl_align) },
            ctrl_offset,
        ))
    }
}

/// A reference to an empty bucket into which an can be inserted.
pub struct InsertSlot {
    index: usize,
}

/// A reference to a hash table bucket containing a `T`.
///
/// This is usually just a pointer to the element itself. However if the element
/// is a ZST, then we instead track the index of the element in the table so
/// that `erase` works properly.
pub struct Bucket<T> {
    // Actually it is pointer to next element than element itself
    // this is needed to maintain pointer arithmetic invariants
    // keeping direct pointer to element introduces difficulty.
    // Using `NonNull` for variance and niche layout
    ptr: NonNull<T>,
}

// This Send impl is needed for rayon support. This is safe since Bucket is
// never exposed in a public API.
unsafe impl<T> Send for Bucket<T> {}

impl<T> Clone for Bucket<T> {
    #[inline]
    fn clone(&self) -> Self {
        Self { ptr: self.ptr }
    }
}

impl<T> Bucket<T> {
    /// Creates a [`Bucket`] that contain pointer to the data.
    /// The pointer calculation is performed by calculating the
    /// offset from given `base` pointer (convenience for
    /// `base.as_ptr().sub(index)`).
    ///
    /// `index` is in units of `T`; e.g., an `index` of 3 represents a pointer
    /// offset of `3 * size_of::<T>()` bytes.
    ///
    /// If the `T` is a ZST, then we instead track the index of the element
    /// in the table so that `erase` works properly (return
    /// `NonNull::new_unchecked((index + 1) as *mut T)`)
    ///
    /// # Safety
    ///
    /// If `mem::size_of::<T>() != 0`, then the safety rules are directly derived
    /// from the safety rules for [`<*mut T>::sub`] method of `*mut T` and the safety
    /// rules of [`NonNull::new_unchecked`] function.
    ///
    /// Thus, in order to uphold the safety contracts for the [`<*mut T>::sub`] method
    /// and [`NonNull::new_unchecked`] function, as well as for the correct
    /// logic of the work of this crate, the following rules are necessary and
    /// sufficient:
    ///
    /// * the `base` pointer must not be `dangling` and must points to the
    ///   end of the first `value element` from the `data part` of the table, i.e.
    ///   must be the pointer that returned by [`RawTable::data_end`] or by
    ///   [`RawTableInner::data_end<T>`];
    ///
    /// * `index` must not be greater than `RawTableInner.bucket_mask`, i.e.
    ///   `index <= RawTableInner.bucket_mask` or, in other words, `(index + 1)`
    ///   must be no greater than the number returned by the function
    ///   [`RawTable::buckets`] or [`RawTableInner::buckets`].
    ///
    /// If `mem::size_of::<T>() == 0`, then the only requirement is that the
    /// `index` must not be greater than `RawTableInner.bucket_mask`, i.e.
    /// `index <= RawTableInner.bucket_mask` or, in other words, `(index + 1)`
    /// must be no greater than the number returned by the function
    /// [`RawTable::buckets`] or [`RawTableInner::buckets`].
    ///
    /// [`Bucket`]: crate::raw::Bucket
    /// [`<*mut T>::sub`]: https://doc.rust-lang.org/core/primitive.pointer.html#method.sub-1
    /// [`NonNull::new_unchecked`]: https://doc.rust-lang.org/stable/std/ptr/struct.NonNull.html#method.new_unchecked
    /// [`RawTable::data_end`]: crate::raw::RawTable::data_end
    /// [`RawTableInner::data_end<T>`]: RawTableInner::data_end<T>
    /// [`RawTable::buckets`]: crate::raw::RawTable::buckets
    /// [`RawTableInner::buckets`]: RawTableInner::buckets
    #[inline]
    unsafe fn from_base_index(base: NonNull<T>, index: usize) -> Self {
        // If mem::size_of::<T>() != 0 then return a pointer to an `element` in
        // the data part of the table (we start counting from "0", so that
        // in the expression T[last], the "last" index actually one less than the
        // "buckets" number in the table, i.e. "last = RawTableInner.bucket_mask"):
        //
        //                   `from_base_index(base, 1).as_ptr()` returns a pointer that
        //                   points here in the data part of the table
        //                   (to the start of T1)
        //                        |
        //                        |        `base: NonNull<T>` must point here
        //                        |         (to the end of T0 or to the start of C0)
        //                        v         v
        // [Padding], Tlast, ..., |T1|, T0, |C0, C1, ..., Clast
        //                           ^
        //                           `from_base_index(base, 1)` returns a pointer
        //                           that points here in the data part of the table
        //                           (to the end of T1)
        //
        // where: T0...Tlast - our stored data; C0...Clast - control bytes
        // or metadata for data.
        let ptr = if T::IS_ZST {
            // won't overflow because index must be less than length (bucket_mask)
            // and bucket_mask is guaranteed to be less than `isize::MAX`
            // (see TableLayout::calculate_layout_for method)
            invalid_mut(index + 1)
        } else {
            base.as_ptr().sub(index)
        };
        Self {
            ptr: NonNull::new_unchecked(ptr),
        }
    }

    /// Calculates the index of a [`Bucket`] as distance between two pointers
    /// (convenience for `base.as_ptr().offset_from(self.ptr.as_ptr()) as usize`).
    /// The returned value is in units of T: the distance in bytes divided by
    /// [`core::mem::size_of::<T>()`].
    ///
    /// If the `T` is a ZST, then we return the index of the element in
    /// the table so that `erase` works properly (return `self.ptr.as_ptr() as usize - 1`).
    ///
    /// This function is the inverse of [`from_base_index`].
    ///
    /// # Safety
    ///
    /// If `mem::size_of::<T>() != 0`, then the safety rules are directly derived
    /// from the safety rules for [`<*const T>::offset_from`] method of `*const T`.
    ///
    /// Thus, in order to uphold the safety contracts for [`<*const T>::offset_from`]
    /// method, as well as for the correct logic of the work of this crate, the
    /// following rules are necessary and sufficient:
    ///
    /// * `base` contained pointer must not be `dangling` and must point to the
    ///   end of the first `element` from the `data part` of the table, i.e.
    ///   must be a pointer that returns by [`RawTable::data_end`] or by
    ///   [`RawTableInner::data_end<T>`];
    ///
    /// * `self` also must not contain dangling pointer;
    ///
    /// * both `self` and `base` must be created from the same [`RawTable`]
    ///   (or [`RawTableInner`]).
    ///
    /// If `mem::size_of::<T>() == 0`, this function is always safe.
    ///
    /// [`Bucket`]: crate::raw::Bucket
    /// [`from_base_index`]: crate::raw::Bucket::from_base_index
    /// [`RawTable::data_end`]: crate::raw::RawTable::data_end
    /// [`RawTableInner::data_end<T>`]: RawTableInner::data_end<T>
    /// [`RawTable`]: crate::raw::RawTable
    /// [`RawTableInner`]: RawTableInner
    /// [`<*const T>::offset_from`]: https://doc.rust-lang.org/nightly/core/primitive.pointer.html#method.offset_from
    #[inline]
    unsafe fn to_base_index(&self, base: NonNull<T>) -> usize {
        // If mem::size_of::<T>() != 0 then return an index under which we used to store the
        // `element` in the data part of the table (we start counting from "0", so
        // that in the expression T[last], the "last" index actually is one less than the
        // "buckets" number in the table, i.e. "last = RawTableInner.bucket_mask").
        // For example for 5th element in table calculation is performed like this:
        //
        //                        mem::size_of::<T>()
        //                          |
        //                          |         `self = from_base_index(base, 5)` that returns pointer
        //                          |         that points here in tha data part of the table
        //                          |         (to the end of T5)
        //                          |           |                    `base: NonNull<T>` must point here
        //                          v           |                    (to the end of T0 or to the start of C0)
        //                        /???\         v                      v
        // [Padding], Tlast, ..., |T10|, ..., T5|, T4, T3, T2, T1, T0, |C0, C1, C2, C3, C4, C5, ..., C10, ..., Clast
        //                                      \__________  __________/
        //                                                 \/
        //                                     `bucket.to_base_index(base)` = 5
        //                                     (base.as_ptr() as usize - self.ptr.as_ptr() as usize) / mem::size_of::<T>()
        //
        // where: T0...Tlast - our stored data; C0...Clast - control bytes or metadata for data.
        if T::IS_ZST {
            // this can not be UB
            self.ptr.as_ptr() as usize - 1
        } else {
            offset_from(base.as_ptr(), self.ptr.as_ptr())
        }
    }

    /// Acquires the underlying raw pointer `*mut T` to `data`.
    ///
    /// # Note
    ///
    /// If `T` is not [`Copy`], do not use `*mut T` methods that can cause calling the
    /// destructor of `T` (for example the [`<*mut T>::drop_in_place`] method), because
    /// for properly dropping the data we also need to clear `data` control bytes. If we
    /// drop data, but do not clear `data control byte` it leads to double drop when
    /// [`RawTable`] goes out of scope.
    ///
    /// If you modify an already initialized `value`, so [`Hash`] and [`Eq`] on the new
    /// `T` value and its borrowed form *must* match those for the old `T` value, as the map
    /// will not re-evaluate where the new value should go, meaning the value may become
    /// "lost" if their location does not reflect their state.
    ///
    /// [`RawTable`]: crate::hashbrown::raw::RawTable
    /// [`<*mut T>::drop_in_place`]: https://doc.rust-lang.org/core/primitive.pointer.html#method.drop_in_place
    /// [`Hash`]: https://doc.rust-lang.org/core/hash/trait.Hash.html
    /// [`Eq`]: https://doc.rust-lang.org/core/cmp/trait.Eq.html
    ///
    /// # Examples
    ///
    /// ```
    /// use core::hash::{BuildHasher, Hash};
    /// use core::convert::Infallible;
    ///
    /// use rune::alloc::hashbrown::raw::{Bucket, RawTable};
    ///
    /// type NewHashBuilder = core::hash::BuildHasherDefault<ahash::AHasher>;
    ///
    /// fn make_hash<K: Hash + ?Sized, S: BuildHasher>(hash_builder: &S, key: &K) -> u64 {
    ///     use core::hash::Hasher;
    ///     let mut state = hash_builder.build_hasher();
    ///     key.hash(&mut state);
    ///     state.finish()
    /// }
    ///
    /// let hash_builder = NewHashBuilder::default();
    /// let mut table = RawTable::new();
    ///
    /// let value = ("a", 100);
    /// let hash = make_hash(&hash_builder, &value.0);
    ///
    /// table.insert(&mut (), hash, value.clone(), |_: &mut (), val: &(&str, _)| Ok::<_, Infallible>(make_hash(&hash_builder, &val.0)));
    ///
    /// let bucket: Bucket<(&str, i32)> = table.find(&mut (), hash, |_: &mut (), (k1, _): &(&str, _)| Ok::<_, Infallible>(k1 == &value.0)).unwrap().unwrap();
    ///
    /// assert_eq!(unsafe { &*bucket.as_ptr() }, &("a", 100));
    /// ```
    #[inline]
    pub fn as_ptr(&self) -> *mut T {
        if T::IS_ZST {
            // Just return an arbitrary ZST pointer which is properly aligned
            // invalid pointer is good enough for ZST
            invalid_mut(mem::align_of::<T>())
        } else {
            unsafe { self.ptr.as_ptr().sub(1) }
        }
    }

    /// Create a new [`Bucket`] that is offset from the `self` by the given
    /// `offset`. The pointer calculation is performed by calculating the
    /// offset from `self` pointer (convenience for `self.ptr.as_ptr().sub(offset)`).
    /// This function is used for iterators.
    ///
    /// `offset` is in units of `T`; e.g., a `offset` of 3 represents a pointer
    /// offset of `3 * size_of::<T>()` bytes.
    ///
    /// # Safety
    ///
    /// If `mem::size_of::<T>() != 0`, then the safety rules are directly derived
    /// from the safety rules for [`<*mut T>::sub`] method of `*mut T` and safety
    /// rules of [`NonNull::new_unchecked`] function.
    ///
    /// Thus, in order to uphold the safety contracts for [`<*mut T>::sub`] method
    /// and [`NonNull::new_unchecked`] function, as well as for the correct
    /// logic of the work of this crate, the following rules are necessary and
    /// sufficient:
    ///
    /// * `self` contained pointer must not be `dangling`;
    ///
    /// * `self.to_base_index() + ofset` must not be greater than `RawTableInner.bucket_mask`,
    ///   i.e. `(self.to_base_index() + ofset) <= RawTableInner.bucket_mask` or, in other
    ///   words, `self.to_base_index() + ofset + 1` must be no greater than the number returned
    ///   by the function [`RawTable::buckets`] or [`RawTableInner::buckets`].
    ///
    /// If `mem::size_of::<T>() == 0`, then the only requirement is that the
    /// `self.to_base_index() + ofset` must not be greater than `RawTableInner.bucket_mask`,
    /// i.e. `(self.to_base_index() + ofset) <= RawTableInner.bucket_mask` or, in other words,
    /// `self.to_base_index() + ofset + 1` must be no greater than the number returned by the
    /// function [`RawTable::buckets`] or [`RawTableInner::buckets`].
    ///
    /// [`Bucket`]: crate::raw::Bucket
    /// [`<*mut T>::sub`]: https://doc.rust-lang.org/core/primitive.pointer.html#method.sub-1
    /// [`NonNull::new_unchecked`]: https://doc.rust-lang.org/stable/std/ptr/struct.NonNull.html#method.new_unchecked
    /// [`RawTable::buckets`]: crate::raw::RawTable::buckets
    /// [`RawTableInner::buckets`]: RawTableInner::buckets
    #[inline]
    unsafe fn next_n(&self, offset: usize) -> Self {
        let ptr = if T::IS_ZST {
            // invalid pointer is good enough for ZST
            invalid_mut(self.ptr.as_ptr() as usize + offset)
        } else {
            self.ptr.as_ptr().sub(offset)
        };
        Self {
            ptr: NonNull::new_unchecked(ptr),
        }
    }

    /// Executes the destructor (if any) of the pointed-to `data`.
    ///
    /// # Safety
    ///
    /// See [`ptr::drop_in_place`] for safety concerns.
    ///
    /// You should use [`RawTable::erase`] instead of this function,
    /// or be careful with calling this function directly, because for
    /// properly dropping the data we need also clear `data` control bytes.
    /// If we drop data, but do not erase `data control byte` it leads to
    /// double drop when [`RawTable`] goes out of scope.
    ///
    /// [`ptr::drop_in_place`]: https://doc.rust-lang.org/core/ptr/fn.drop_in_place.html
    /// [`RawTable`]: crate::raw::RawTable
    /// [`RawTable::erase`]: crate::raw::RawTable::erase
    #[cfg_attr(feature = "inline-more", inline)]
    pub(crate) unsafe fn drop(&self) {
        self.as_ptr().drop_in_place();
    }

    /// Reads the `value` from `self` without moving it. This leaves the
    /// memory in `self` unchanged.
    ///
    /// # Safety
    ///
    /// See [`ptr::read`] for safety concerns.
    ///
    /// You should use [`RawTable::remove`] instead of this function,
    /// or be careful with calling this function directly, because compiler
    /// calls its destructor when readed `value` goes out of scope. It
    /// can cause double dropping when [`RawTable`] goes out of scope,
    /// because of not erased `data control byte`.
    ///
    /// [`ptr::read`]: https://doc.rust-lang.org/core/ptr/fn.read.html
    /// [`RawTable`]: crate::raw::RawTable
    /// [`RawTable::remove`]: crate::raw::RawTable::remove
    #[inline]
    pub(crate) unsafe fn read(&self) -> T {
        self.as_ptr().read()
    }

    /// Overwrites a memory location with the given `value` without reading
    /// or dropping the old value (like [`ptr::write`] function).
    ///
    /// # Safety
    ///
    /// See [`ptr::write`] for safety concerns.
    ///
    /// # Note
    ///
    /// [`Hash`] and [`Eq`] on the new `T` value and its borrowed form *must* match
    /// those for the old `T` value, as the map will not re-evaluate where the new
    /// value should go, meaning the value may become "lost" if their location
    /// does not reflect their state.
    ///
    /// [`ptr::write`]: https://doc.rust-lang.org/core/ptr/fn.write.html
    /// [`Hash`]: https://doc.rust-lang.org/core/hash/trait.Hash.html
    /// [`Eq`]: https://doc.rust-lang.org/core/cmp/trait.Eq.html
    #[inline]
    pub(crate) unsafe fn write(&self, val: T) {
        self.as_ptr().write(val);
    }

    /// Returns a shared immutable reference to the `value`.
    ///
    /// # Safety
    ///
    /// See [`NonNull::as_ref`] for safety concerns.
    ///
    /// [`NonNull::as_ref`]: https://doc.rust-lang.org/core/ptr/struct.NonNull.html#method.as_ref
    ///
    /// # Examples
    ///
    /// ```
    /// use core::hash::{BuildHasher, Hash};
    /// use core::convert::Infallible;
    ///
    /// use rune::alloc::hashbrown::raw::{Bucket, RawTable};
    ///
    /// type NewHashBuilder = core::hash::BuildHasherDefault<ahash::AHasher>;
    ///
    /// fn make_hash<K: Hash + ?Sized, S: BuildHasher>(hash_builder: &S, key: &K) -> u64 {
    ///     use core::hash::Hasher;
    ///     let mut state = hash_builder.build_hasher();
    ///     key.hash(&mut state);
    ///     state.finish()
    /// }
    ///
    /// let hash_builder = NewHashBuilder::default();
    /// let mut table = RawTable::new();
    ///
    /// let value: (&str, String) = ("A pony", "is a small horse".to_owned());
    /// let hash = make_hash(&hash_builder, &value.0);
    ///
    /// table.insert(&mut (), hash, value.clone(), |_: &mut (), (val, _): &(&str, _)| Ok::<_, Infallible>(make_hash(&hash_builder, val))).unwrap();
    ///
    /// let bucket: Bucket<(&str, String)> = table.find(&mut (), hash, |_: &mut (), (k, _): &(&str, _)| Ok::<_, Infallible>(k == &value.0)).unwrap().unwrap();
    ///
    /// assert_eq!(
    ///     unsafe { bucket.as_ref() },
    ///     &("A pony", "is a small horse".to_owned())
    /// );
    /// ```
    #[inline]
    pub unsafe fn as_ref<'a>(&self) -> &'a T {
        &*self.as_ptr()
    }

    /// Returns a unique mutable reference to the `value`.
    ///
    /// # Safety
    ///
    /// See [`NonNull::as_mut`] for safety concerns.
    ///
    /// # Note
    ///
    /// [`Hash`] and [`Eq`] on the new `T` value and its borrowed form *must* match
    /// those for the old `T` value, as the map will not re-evaluate where the new
    /// value should go, meaning the value may become "lost" if their location
    /// does not reflect their state.
    ///
    /// [`NonNull::as_mut`]: https://doc.rust-lang.org/core/ptr/struct.NonNull.html#method.as_mut
    /// [`Hash`]: https://doc.rust-lang.org/core/hash/trait.Hash.html
    /// [`Eq`]: https://doc.rust-lang.org/core/cmp/trait.Eq.html
    ///
    /// # Examples
    ///
    /// ```
    /// use core::hash::{BuildHasher, Hash};
    /// use core::convert::Infallible;
    ///
    /// use rune::alloc::hashbrown::raw::{Bucket, RawTable};
    ///
    /// type NewHashBuilder = core::hash::BuildHasherDefault<ahash::AHasher>;
    ///
    /// fn make_hash<K: Hash + ?Sized, S: BuildHasher>(hash_builder: &S, key: &K) -> u64 {
    ///     use core::hash::Hasher;
    ///     let mut state = hash_builder.build_hasher();
    ///     key.hash(&mut state);
    ///     state.finish()
    /// }
    ///
    /// let hash_builder = NewHashBuilder::default();
    /// let mut table = RawTable::new();
    ///
    /// let value: (&str, String) = ("A pony", "is a small horse".to_owned());
    /// let hash = make_hash(&hash_builder, &value.0);
    ///
    /// table.insert(&mut (), hash, value.clone(), |_: &mut (), (k, _): &(&str, _)| Ok::<_, Infallible>(make_hash(&hash_builder, k))).unwrap();
    ///
    /// let bucket: Bucket<(&str, String)> = table.find(&mut (), hash, |_: &mut (), (k, _): &(&str, _)| Ok::<_, Infallible>(k == &value.0)).unwrap().unwrap();
    ///
    /// unsafe {
    ///     bucket
    ///         .as_mut()
    ///         .1
    ///         .push_str(" less than 147 cm at the withers")
    /// };
    /// assert_eq!(
    ///     unsafe { bucket.as_ref() },
    ///     &(
    ///         "A pony",
    ///         "is a small horse less than 147 cm at the withers".to_owned()
    ///     )
    /// );
    /// # Ok::<_, rune::alloc::Error>(())
    /// ```
    #[inline]
    pub unsafe fn as_mut<'a>(&self) -> &'a mut T {
        &mut *self.as_ptr()
    }

    /// Copies `size_of<T>` bytes from `other` to `self`. The source
    /// and destination may *not* overlap.
    ///
    /// # Safety
    ///
    /// See [`ptr::copy_nonoverlapping`] for safety concerns.
    ///
    /// Like [`read`], `copy_nonoverlapping` creates a bitwise copy of `T`, regardless of
    /// whether `T` is [`Copy`]. If `T` is not [`Copy`], using *both* the values
    /// in the region beginning at `*self` and the region beginning at `*other` can
    /// [violate memory safety].
    ///
    /// # Note
    ///
    /// [`Hash`] and [`Eq`] on the new `T` value and its borrowed form *must* match
    /// those for the old `T` value, as the map will not re-evaluate where the new
    /// value should go, meaning the value may become "lost" if their location
    /// does not reflect their state.
    ///
    /// [`ptr::copy_nonoverlapping`]: https://doc.rust-lang.org/core/ptr/fn.copy_nonoverlapping.html
    /// [`read`]: https://doc.rust-lang.org/core/ptr/fn.read.html
    /// [violate memory safety]: https://doc.rust-lang.org/std/ptr/fn.read.html#ownership-of-the-returned-value
    /// [`Hash`]: https://doc.rust-lang.org/core/hash/trait.Hash.html
    /// [`Eq`]: https://doc.rust-lang.org/core/cmp/trait.Eq.html
    #[inline]
    pub unsafe fn copy_from_nonoverlapping(&self, other: &Self) {
        self.as_ptr().copy_from_nonoverlapping(other.as_ptr(), 1);
    }
}

/// A raw hash table with an unsafe API.
pub struct RawTable<T, A: Allocator = Global> {
    table: RawTableInner,
    alloc: A,
    // Tell dropck that we own instances of T.
    marker: PhantomData<T>,
}

/// Non-generic part of `RawTable` which allows functions to be instantiated only once regardless
/// of how many different key-value types are used.
struct RawTableInner {
    // Mask to get an index from a hash value. The value is one less than the
    // number of buckets in the table.
    bucket_mask: usize,

    // [Padding], T1, T2, ..., Tlast, C1, C2, ...
    //                                ^ points here
    ctrl: NonNull<u8>,

    // Number of elements that can be inserted before we need to grow the table
    growth_left: usize,

    // Number of elements in the table, only really used by len()
    items: usize,
}

impl<T> RawTable<T, Global> {
    /// Creates a new empty hash table without allocating any memory.
    ///
    /// In effect this returns a table with exactly 1 bucket. However we can
    /// leave the data pointer dangling since that bucket is never written to
    /// due to our load factor forcing us to always have at least 1 free bucket.
    #[inline]
    pub const fn new() -> Self {
        Self {
            table: RawTableInner::NEW,
            alloc: Global,
            marker: PhantomData,
        }
    }

    /// Attempts to allocate a new hash table with at least enough capacity
    /// for inserting the given number of elements without reallocating.
    pub fn try_with_capacity(capacity: usize) -> Result<Self, Error> {
        Self::try_with_capacity_in(capacity, Global)
    }
}

impl<T, A: Allocator> RawTable<T, A> {
    const TABLE_LAYOUT: TableLayout = TableLayout::new::<T>();

    /// Creates a new empty hash table without allocating any memory, using the
    /// given allocator.
    ///
    /// In effect this returns a table with exactly 1 bucket. However we can
    /// leave the data pointer dangling since that bucket is never written to
    /// due to our load factor forcing us to always have at least 1 free bucket.
    #[inline]
    pub const fn new_in(alloc: A) -> Self {
        Self {
            table: RawTableInner::NEW,
            alloc,
            marker: PhantomData,
        }
    }

    /// Allocates a new hash table with the given number of buckets.
    ///
    /// The control bytes are left uninitialized.
    #[cfg_attr(feature = "inline-more", inline)]
    unsafe fn new_uninitialized(alloc: A, buckets: usize) -> Result<Self, Error> {
        debug_assert!(buckets.is_power_of_two());

        Ok(Self {
            table: RawTableInner::new_uninitialized(&alloc, Self::TABLE_LAYOUT, buckets)?,
            alloc,
            marker: PhantomData,
        })
    }

    /// Allocates a new hash table using the given allocator, with at least enough capacity for
    /// inserting the given number of elements without reallocating.
    pub fn try_with_capacity_in(capacity: usize, alloc: A) -> Result<Self, Error> {
        Ok(Self {
            table: RawTableInner::try_with_capacity(&alloc, Self::TABLE_LAYOUT, capacity)?,
            alloc,
            marker: PhantomData,
        })
    }

    /// Returns a reference to the underlying allocator.
    #[inline]
    pub fn allocator(&self) -> &A {
        &self.alloc
    }

    /// Returns pointer to one past last element of data table.
    #[inline]
    pub unsafe fn data_end(&self) -> NonNull<T> {
        NonNull::new_unchecked(self.table.ctrl.as_ptr().cast())
    }

    /// Returns pointer to start of data table.
    #[inline]
    #[cfg(any(feature = "raw", rune_nightly))]
    pub unsafe fn data_start(&self) -> NonNull<T> {
        NonNull::new_unchecked(self.data_end().as_ptr().wrapping_sub(self.buckets()))
    }

    /// Return the information about memory allocated by the table.
    ///
    /// `RawTable` allocates single memory block to store both data and metadata.
    /// This function returns allocation size and alignment and the beginning of the area.
    /// These are the arguments which will be passed to `dealloc` when the table is dropped.
    ///
    /// This function might be useful for memory profiling.
    #[inline]
    pub fn allocation_info(&self) -> (NonNull<u8>, Layout) {
        // SAFETY: We use the same `table_layout` that was used to allocate
        // this table.
        unsafe { self.table.allocation_info_or_zero(Self::TABLE_LAYOUT) }
    }

    /// Returns the index of a bucket from a `Bucket`.
    #[inline]
    pub unsafe fn bucket_index(&self, bucket: &Bucket<T>) -> usize {
        bucket.to_base_index(self.data_end())
    }

    /// Returns a pointer to an element in the table.
    #[inline]
    pub unsafe fn bucket(&self, index: usize) -> Bucket<T> {
        debug_assert_ne!(self.table.bucket_mask, 0);
        debug_assert!(index < self.buckets());
        Bucket::from_base_index(self.data_end(), index)
    }

    /// Erases an element from the table without dropping it.
    #[cfg_attr(feature = "inline-more", inline)]
    unsafe fn erase_no_drop(&mut self, item: &Bucket<T>) {
        let index = self.bucket_index(item);
        self.table.erase(index);
    }

    /// Erases an element from the table, dropping it in place.
    #[cfg_attr(feature = "inline-more", inline)]
    #[allow(clippy::needless_pass_by_value)]
    pub unsafe fn erase(&mut self, item: Bucket<T>) {
        // Erase the element from the table first since drop might panic.
        self.erase_no_drop(&item);
        item.drop();
    }

    /// Finds and erases an element from the table, dropping it in place.
    /// Returns true if an element was found.
    #[cfg_attr(feature = "inline-more", inline)]
    pub fn erase_entry<C: ?Sized, E>(
        &mut self,
        cx: &mut C,
        hash: u64,
        eq: impl EqFn<C, T, E>,
    ) -> Result<bool, E> {
        // Avoid `Option::map` because it bloats LLVM IR.
        if let Some(bucket) = self.find(cx, hash, eq)? {
            unsafe {
                self.erase(bucket);
            }
            Ok(true)
        } else {
            Ok(false)
        }
    }

    /// Removes an element from the table, returning it.
    ///
    /// This also returns an `InsertSlot` pointing to the newly free bucket.
    #[cfg_attr(feature = "inline-more", inline)]
    #[allow(clippy::needless_pass_by_value)]
    pub unsafe fn remove(&mut self, item: Bucket<T>) -> (T, InsertSlot) {
        self.erase_no_drop(&item);
        (
            item.read(),
            InsertSlot {
                index: self.bucket_index(&item),
            },
        )
    }

    /// Finds and removes an element from the table, returning it.
    #[cfg_attr(feature = "inline-more", inline)]
    pub fn remove_entry<C: ?Sized, E>(
        &mut self,
        cx: &mut C,
        hash: u64,
        eq: impl EqFn<C, T, E>,
    ) -> Result<Option<T>, E> {
        // Avoid `Option::map` because it bloats LLVM IR.
        Ok(match self.find(cx, hash, eq)? {
            Some(bucket) => Some(unsafe { self.remove(bucket).0 }),
            None => None,
        })
    }

    /// Marks all table buckets as empty without dropping their contents.
    #[cfg_attr(feature = "inline-more", inline)]
    pub fn clear_no_drop(&mut self) {
        self.table.clear_no_drop();
    }

    /// Removes all elements from the table without freeing the backing memory.
    #[cfg_attr(feature = "inline-more", inline)]
    pub fn clear(&mut self) {
        if self.is_empty() {
            // Special case empty table to avoid surprising O(capacity) time.
            return;
        }
        // Ensure that the table is reset even if one of the drops panic
        let mut self_ = guard(self, |self_| self_.clear_no_drop());
        unsafe {
            // SAFETY: ScopeGuard sets to zero the `items` field of the table
            // even in case of panic during the dropping of the elements so
            // that there will be no double drop of the elements.
            self_.table.drop_elements::<T>();
        }
    }

    /// Shrinks the table to fit `max(self.len(), min_size)` elements.
    #[cfg_attr(feature = "inline-more", inline)]
    pub fn shrink_to<C: ?Sized, E>(
        &mut self,
        cx: &mut C,
        min_size: usize,
        hasher: impl HasherFn<C, T, E>,
    ) -> Result<(), CustomError<E>> {
        // Calculate the minimal number of elements that we need to reserve
        // space for.
        let min_size = usize::max(self.table.items, min_size);
        if min_size == 0 {
            let mut old_inner = mem::replace(&mut self.table, RawTableInner::NEW);
            unsafe {
                // SAFETY:
                // 1. We call the function only once;
                // 2. We know for sure that `alloc` and `table_layout` matches the [`Allocator`]
                //    and [`TableLayout`] that were used to allocate this table.
                // 3. If any elements' drop function panics, then there will only be a memory leak,
                //    because we have replaced the inner table with a new one.
                old_inner.drop_inner_table::<T, _>(&self.alloc, Self::TABLE_LAYOUT);
            }
            return Ok(());
        }

        // Calculate the number of buckets that we need for this number of
        // elements. If the calculation overflows then the requested bucket
        // count must be larger than what we have right and nothing needs to be
        // done.
        let min_buckets = match capacity_to_buckets(min_size) {
            Some(buckets) => buckets,
            None => return Ok(()),
        };

        // If we have more buckets than we need, shrink the table.
        if min_buckets < self.buckets() {
            // Fast path if the table is empty
            if self.table.items == 0 {
                let new_inner =
                    RawTableInner::try_with_capacity(&self.alloc, Self::TABLE_LAYOUT, min_size)?;
                let mut old_inner = mem::replace(&mut self.table, new_inner);
                unsafe {
                    // SAFETY:
                    // 1. We call the function only once;
                    // 2. We know for sure that `alloc` and `table_layout` matches the [`Allocator`]
                    //    and [`TableLayout`] that were used to allocate this table.
                    // 3. If any elements' drop function panics, then there will only be a memory leak,
                    //    because we have replaced the inner table with a new one.
                    old_inner.drop_inner_table::<T, _>(&self.alloc, Self::TABLE_LAYOUT);
                }
            } else {
                // Avoid `Result::unwrap_or_else` because it bloats LLVM IR.
                unsafe {
                    // SAFETY:
                    // 1. We know for sure that `min_size >= self.table.items`.
                    // 2. The [`RawTableInner`] must already have properly initialized control bytes since
                    //    we never exposed RawTable::new_uninitialized in a public API.
                    self.resize(cx, min_size, hasher)?;
                }
            }
        }

        Ok(())
    }

    /// Ensures that at least `additional` items can be inserted into the table
    /// without reallocation.
    #[cfg_attr(feature = "inline-more", inline)]
    pub fn reserve<C: ?Sized, E>(
        &mut self,
        cx: &mut C,
        additional: usize,
        hasher: impl HasherFn<C, T, E>,
    ) -> Result<(), CustomError<E>> {
        if unlikely(additional > self.table.growth_left) {
            // Avoid `Result::unwrap_or_else` because it bloats LLVM IR.
            unsafe {
                // SAFETY: The [`RawTableInner`] must already have properly initialized control
                // bytes since we never exposed RawTable::new_uninitialized in a public API.
                self.reserve_rehash(cx, additional, hasher)?;
            }
        }

        Ok(())
    }

    /// Tries to ensure that at least `additional` items can be inserted into
    /// the table without reallocation.
    #[cfg_attr(feature = "inline-more", inline)]
    pub fn try_reserve<C: ?Sized, E>(
        &mut self,
        cx: &mut C,
        additional: usize,
        hasher: impl HasherFn<C, T, E>,
    ) -> Result<(), CustomError<E>> {
        if additional > self.table.growth_left {
            // SAFETY: The [`RawTableInner`] must already have properly initialized control
            // bytes since we never exposed RawTable::new_uninitialized in a public API.
            unsafe { self.reserve_rehash(cx, additional, hasher) }
        } else {
            Ok(())
        }
    }

    /// Out-of-line slow path for `reserve` and `try_reserve`.
    ///
    /// # Safety
    ///
    /// The [`RawTableInner`] must have properly initialized control bytes,
    /// otherwise calling this function results in [`undefined behavior`]
    ///
    /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
    #[cold]
    #[inline(never)]
    unsafe fn reserve_rehash<C: ?Sized, E>(
        &mut self,
        cx: &mut C,
        additional: usize,
        hasher: impl HasherFn<C, T, E>,
    ) -> Result<(), CustomError<E>> {
        unsafe {
            // SAFETY:
            // 1. We know for sure that `alloc` and `layout` matches the [`Allocator`] and
            //    [`TableLayout`] that were used to allocate this table.
            // 2. The `drop` function is the actual drop function of the elements stored in
            //    the table.
            // 3. The caller ensures that the control bytes of the `RawTableInner`
            //    are already initialized.
            self.table.reserve_rehash_inner(
                cx,
                &self.alloc,
                additional,
                &|cx, table, index| hasher.hash(cx, table.bucket::<T>(index).as_ref()),
                Self::TABLE_LAYOUT,
                if T::NEEDS_DROP {
                    Some(mem::transmute::<unsafe fn(*mut T), fn(*mut u8)>(
                        ptr::drop_in_place::<T> as unsafe fn(*mut T),
                    ))
                } else {
                    None
                },
            )
        }
    }

    /// Allocates a new table of a different size and moves the contents of the
    /// current table into it.
    ///
    /// # Safety
    ///
    /// The [`RawTableInner`] must have properly initialized control bytes,
    /// otherwise calling this function results in [`undefined behavior`]
    ///
    /// The caller of this function must ensure that `capacity >= self.table.items`
    /// otherwise:
    ///
    /// * If `self.table.items != 0`, calling of this function with `capacity`
    ///   equal to 0 (`capacity == 0`) results in [`undefined behavior`].
    ///
    /// * If `capacity_to_buckets(capacity) < Group::WIDTH` and
    ///   `self.table.items > capacity_to_buckets(capacity)`
    ///   calling this function results in [`undefined behavior`].
    ///
    /// * If `capacity_to_buckets(capacity) >= Group::WIDTH` and
    ///   `self.table.items > capacity_to_buckets(capacity)`
    ///   calling this function are never return (will go into an
    ///   infinite loop).
    ///
    /// See [`RawTableInner::find_insert_slot`] for more information.
    ///
    /// [`RawTableInner::find_insert_slot`]: RawTableInner::find_insert_slot
    /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
    unsafe fn resize<C: ?Sized, E>(
        &mut self,
        cx: &mut C,
        capacity: usize,
        hasher: impl HasherFn<C, T, E>,
    ) -> Result<(), CustomError<E>> {
        // SAFETY:
        // 1. The caller of this function guarantees that `capacity >= self.table.items`.
        // 2. We know for sure that `alloc` and `layout` matches the [`Allocator`] and
        //    [`TableLayout`] that were used to allocate this table.
        // 3. The caller ensures that the control bytes of the `RawTableInner`
        //    are already initialized.
        self.table.resize_inner(
            cx,
            &self.alloc,
            capacity,
            &move |cx, table, index| hasher.hash(cx, table.bucket::<T>(index).as_ref()),
            Self::TABLE_LAYOUT,
        )
    }

    /// Inserts a new element into the table, and returns its raw bucket.
    ///
    /// This does not check if the given element already exists in the table.
    #[cfg_attr(feature = "inline-more", inline)]
    pub fn insert<C: ?Sized, E>(
        &mut self,
        cx: &mut C,
        hash: u64,
        value: T,
        hasher: impl HasherFn<C, T, E>,
    ) -> Result<Bucket<T>, CustomError<E>> {
        unsafe {
            let mut slot = self.table.find_insert_slot(hash);

            // We can avoid growing the table once we have reached our load
            // factor if we are replacing a tombstone. This works since the
            // number of EMPTY slots does not change in this case.
            let old_ctrl = *self.table.ctrl(slot.index);
            if unlikely(self.table.growth_left == 0 && special_is_empty(old_ctrl)) {
                self.reserve(cx, 1, hasher)?;
                slot = self.table.find_insert_slot(hash);
            }

            Ok(self.insert_in_slot(hash, slot, value))
        }
    }

    /// Attempts to insert a new element without growing the table and return its raw bucket.
    ///
    /// Returns an `Err` containing the given element if inserting it would require growing the
    /// table.
    ///
    /// This does not check if the given element already exists in the table.
    #[cfg_attr(feature = "inline-more", inline)]
    pub fn try_insert_no_grow(&mut self, hash: u64, value: T) -> Result<Bucket<T>, T> {
        unsafe {
            match self.table.prepare_insert_no_grow(hash) {
                Ok(index) => {
                    let bucket = self.bucket(index);
                    bucket.write(value);
                    Ok(bucket)
                }
                Err(()) => Err(value),
            }
        }
    }

    /// Inserts a new element into the table, and returns a mutable reference to it.
    ///
    /// This does not check if the given element already exists in the table.
    #[cfg_attr(feature = "inline-more", inline)]
    pub fn insert_entry<C: ?Sized, E>(
        &mut self,
        cx: &mut C,
        hash: u64,
        value: T,
        hasher: impl HasherFn<C, T, E>,
    ) -> Result<&mut T, CustomError<E>> {
        Ok(unsafe { self.insert(cx, hash, value, hasher)?.as_mut() })
    }

    /// Inserts a new element into the table, without growing the table.
    ///
    /// There must be enough space in the table to insert the new element.
    ///
    /// This does not check if the given element already exists in the table.
    #[cfg_attr(feature = "inline-more", inline)]
    #[cfg(feature = "raw")]
    pub unsafe fn insert_no_grow(&mut self, hash: u64, value: T) -> Bucket<T> {
        let (index, old_ctrl) = self.table.prepare_insert_slot(hash);
        let bucket = self.table.bucket(index);

        // If we are replacing a DELETED entry then we don't need to update
        // the load counter.
        self.table.growth_left -= special_is_empty(old_ctrl) as usize;

        bucket.write(value);
        self.table.items += 1;
        bucket
    }

    /// Temporary removes a bucket, applying the given function to the removed
    /// element and optionally put back the returned value in the same bucket.
    ///
    /// Returns `true` if the bucket still contains an element
    ///
    /// This does not check if the given bucket is actually occupied.
    #[cfg_attr(feature = "inline-more", inline)]
    pub unsafe fn replace_bucket_with<F>(&mut self, bucket: Bucket<T>, f: F) -> bool
    where
        F: FnOnce(T) -> Option<T>,
    {
        let index = self.bucket_index(&bucket);
        let old_ctrl = *self.table.ctrl(index);
        debug_assert!(self.is_bucket_full(index));
        let old_growth_left = self.table.growth_left;
        let item = self.remove(bucket).0;
        if let Some(new_item) = f(item) {
            self.table.growth_left = old_growth_left;
            self.table.set_ctrl(index, old_ctrl);
            self.table.items += 1;
            self.bucket(index).write(new_item);
            true
        } else {
            false
        }
    }

    /// Searches for an element in the table. If the element is not found,
    /// returns `Err` with the position of a slot where an element with the
    /// same hash could be inserted.
    ///
    /// This function may resize the table if additional space is required for
    /// inserting an element.
    #[inline]
    pub fn find_or_find_insert_slot<C: ?Sized, E>(
        &mut self,
        cx: &mut C,
        hash: u64,
        eq: impl EqFn<C, T, E>,
        hasher: impl HasherFn<C, T, E>,
    ) -> Result<Bucket<T>, ErrorOrInsertSlot<E>> {
        self.reserve(cx, 1, hasher)?;

        let index = self
            .table
            .find_or_find_insert_slot_inner(cx, hash, &|cx, index| unsafe {
                eq.eq(cx, self.bucket(index).as_ref())
            })?;

        Ok(unsafe { self.bucket(index) })
    }

    /// Inserts a new element into the table in the given slot, and returns its
    /// raw bucket.
    ///
    /// # Safety
    ///
    /// `slot` must point to a slot previously returned by
    /// `find_or_find_insert_slot`, and no mutation of the table must have
    /// occurred since that call.
    #[inline]
    pub unsafe fn insert_in_slot(&mut self, hash: u64, slot: InsertSlot, value: T) -> Bucket<T> {
        let old_ctrl = *self.table.ctrl(slot.index);
        self.table.record_item_insert_at(slot.index, old_ctrl, hash);

        let bucket = self.bucket(slot.index);
        bucket.write(value);
        bucket
    }

    /// Searches for an element in the table.
    #[inline]
    pub fn find<C: ?Sized, E>(
        &self,
        cx: &mut C,
        hash: u64,
        eq: impl EqFn<C, T, E>,
    ) -> Result<Option<Bucket<T>>, E> {
        let result = self.table.find_inner(cx, hash, &|cx, index| unsafe {
            eq.eq(cx, self.bucket(index).as_ref())
        })?;

        // Avoid `Option::map` because it bloats LLVM IR.
        Ok(match result {
            Some(index) => Some(unsafe { self.bucket(index) }),
            None => None,
        })
    }

    /// Gets a reference to an element in the table.
    #[inline]
    pub fn get<C: ?Sized, E>(
        &self,
        cx: &mut C,
        hash: u64,
        eq: impl EqFn<C, T, E>,
    ) -> Result<Option<&T>, E> {
        // Avoid `Option::map` because it bloats LLVM IR.
        Ok(match self.find(cx, hash, eq)? {
            Some(bucket) => Some(unsafe { bucket.as_ref() }),
            None => None,
        })
    }

    /// Gets a mutable reference to an element in the table.
    #[inline]
    pub fn get_mut<C: ?Sized, E>(
        &mut self,
        cx: &mut C,
        hash: u64,
        eq: impl EqFn<C, T, E>,
    ) -> Result<Option<&mut T>, E> {
        // Avoid `Option::map` because it bloats LLVM IR.
        Ok(match self.find(cx, hash, eq)? {
            Some(bucket) => Some(unsafe { bucket.as_mut() }),
            None => None,
        })
    }

    /// Attempts to get mutable references to `N` entries in the table at once.
    ///
    /// Returns an array of length `N` with the results of each query.
    ///
    /// At most one mutable reference will be returned to any entry. `None` will be returned if any
    /// of the hashes are duplicates. `None` will be returned if the hash is not found.
    ///
    /// The `eq` argument should be a closure such that `eq(i, k)` returns true if `k` is equal to
    /// the `i`th key to be looked up.
    pub fn get_many_mut<C: ?Sized, E, const N: usize>(
        &mut self,
        cx: &mut C,
        hashes: [u64; N],
        eq: impl Fn(&mut C, usize, &T) -> Result<bool, E>,
    ) -> Result<Option<[&'_ mut T; N]>, E> {
        unsafe {
            let ptrs = match self.get_many_mut_pointers(cx, hashes, eq)? {
                Some(ptrs) => ptrs,
                None => return Ok(None),
            };

            for (i, &cur) in ptrs.iter().enumerate() {
                if ptrs[..i].iter().any(|&prev| ptr::eq::<T>(prev, cur)) {
                    return Ok(None);
                }
            }
            // All bucket are distinct from all previous buckets so we're clear to return the result
            // of the lookup.

            // TODO use `MaybeUninit::array_assume_init` here instead once that's stable.
            Ok(Some(mem::transmute_copy(&ptrs)))
        }
    }

    pub unsafe fn get_many_unchecked_mut<C: ?Sized, E, const N: usize>(
        &mut self,
        cx: &mut C,
        hashes: [u64; N],
        eq: impl Fn(&mut C, usize, &T) -> Result<bool, E>,
    ) -> Result<Option<[&'_ mut T; N]>, E> {
        let ptrs = match self.get_many_mut_pointers(cx, hashes, eq)? {
            Some(ptrs) => ptrs,
            None => return Ok(None),
        };

        Ok(Some(mem::transmute_copy(&ptrs)))
    }

    unsafe fn get_many_mut_pointers<C: ?Sized, E, const N: usize>(
        &mut self,
        cx: &mut C,
        hashes: [u64; N],
        eq: impl Fn(&mut C, usize, &T) -> Result<bool, E>,
    ) -> Result<Option<[*mut T; N]>, E> {
        // TODO use `MaybeUninit::uninit_array` here instead once that's stable.
        let mut outs: MaybeUninit<[*mut T; N]> = MaybeUninit::uninit();
        let outs_ptr = outs.as_mut_ptr();

        for (i, &hash) in hashes.iter().enumerate() {
            let cur = match self.find(cx, hash, |cx: &mut C, k: &T| eq(cx, i, k))? {
                Some(cur) => cur,
                None => return Ok(None),
            };
            *(*outs_ptr).get_unchecked_mut(i) = cur.as_mut();
        }

        // TODO use `MaybeUninit::array_assume_init` here instead once that's stable.
        Ok(Some(outs.assume_init()))
    }

    /// Returns the number of elements the map can hold without reallocating.
    ///
    /// This number is a lower bound; the table might be able to hold
    /// more, but is guaranteed to be able to hold at least this many.
    #[inline]
    pub fn capacity(&self) -> usize {
        self.table.items + self.table.growth_left
    }

    /// Returns the number of elements in the table.
    #[inline]
    pub fn len(&self) -> usize {
        self.table.items
    }

    /// Returns `true` if the table contains no elements.
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Returns the number of buckets in the table.
    #[inline]
    pub fn buckets(&self) -> usize {
        self.table.bucket_mask + 1
    }

    /// Checks whether the bucket at `index` is full.
    ///
    /// # Safety
    ///
    /// The caller must ensure `index` is less than the number of buckets.
    #[inline]
    pub unsafe fn is_bucket_full(&self, index: usize) -> bool {
        self.table.is_bucket_full(index)
    }

    /// Returns an iterator over every element in the table. It is up to
    /// the caller to ensure that the `RawTable` outlives the `RawIter`.
    /// Because we cannot make the `next` method unsafe on the `RawIter`
    /// struct, we have to make the `iter` method unsafe.
    ///
    /// # Safety
    ///
    /// Caller must ensure that the raw iterator doesn't outlive `self`.
    #[inline]
    pub unsafe fn iter(&self) -> RawIter<T> {
        // SAFETY:
        // 1. The caller must uphold the safety contract for `iter` method.
        // 2. The [`RawTableInner`] must already have properly initialized control bytes since
        //    we never exposed RawTable::new_uninitialized in a public API.
        self.table.iter()
    }

    /// Returns an iterator over occupied buckets that could match a given hash.
    ///
    /// `RawTable` only stores 7 bits of the hash value, so this iterator may
    /// return items that have a hash value different than the one provided. You
    /// should always validate the returned values before using them.
    ///
    /// It is up to the caller to ensure that the `RawTable` outlives the
    /// `RawIterHash`. Because we cannot make the `next` method unsafe on the
    /// `RawIterHash` struct, we have to make the `iter_hash` method unsafe.
    #[cfg_attr(feature = "inline-more", inline)]
    pub unsafe fn iter_hash(&self, hash: u64) -> RawIterHash<T> {
        RawIterHash::new(self, hash)
    }

    /// Returns an iterator which removes all elements from the table without
    /// freeing the memory.
    #[cfg_attr(feature = "inline-more", inline)]
    pub fn drain(&mut self) -> RawDrain<'_, T, A> {
        unsafe {
            let iter = self.iter();
            self.drain_iter_from(iter)
        }
    }

    /// Returns an iterator which removes all elements from the table without
    /// freeing the memory.
    ///
    /// Iteration starts at the provided iterator's current location.
    ///
    /// It is up to the caller to ensure that the iterator is valid for this
    /// `RawTable` and covers all items that remain in the table.
    #[cfg_attr(feature = "inline-more", inline)]
    pub unsafe fn drain_iter_from(&mut self, iter: RawIter<T>) -> RawDrain<'_, T, A> {
        debug_assert_eq!(iter.len(), self.len());
        RawDrain {
            iter,
            table: mem::replace(&mut self.table, RawTableInner::NEW),
            orig_table: NonNull::from(&mut self.table),
            marker: PhantomData,
        }
    }

    /// Returns an iterator which consumes all elements from the table.
    ///
    /// Iteration starts at the provided iterator's current location.
    ///
    /// It is up to the caller to ensure that the iterator is valid for this
    /// `RawTable` and covers all items that remain in the table.
    pub unsafe fn into_iter_from(self, iter: RawIter<T>) -> RawIntoIter<T, A> {
        debug_assert_eq!(iter.len(), self.len());

        let allocation = self.into_allocation();
        RawIntoIter {
            iter,
            allocation,
            marker: PhantomData,
        }
    }

    /// Converts the table into a raw allocation. The contents of the table
    /// should be dropped using a `RawIter` before freeing the allocation.
    #[cfg_attr(feature = "inline-more", inline)]
    pub(crate) fn into_allocation(self) -> Option<(NonNull<u8>, Layout, A)> {
        let alloc = if self.table.is_empty_singleton() {
            None
        } else {
            // Avoid `Option::unwrap_or_else` because it bloats LLVM IR.
            let (layout, ctrl_offset) =
                match Self::TABLE_LAYOUT.calculate_layout_for(self.table.buckets()) {
                    Some(lco) => lco,
                    None => unsafe { hint::unreachable_unchecked() },
                };
            Some((
                unsafe { NonNull::new_unchecked(self.table.ctrl.as_ptr().sub(ctrl_offset)) },
                layout,
                unsafe { ptr::read(&self.alloc) },
            ))
        };
        mem::forget(self);
        alloc
    }
}

unsafe impl<T, A: Allocator> Send for RawTable<T, A>
where
    T: Send,
    A: Send,
{
}
unsafe impl<T, A: Allocator> Sync for RawTable<T, A>
where
    T: Sync,
    A: Sync,
{
}

impl RawTableInner {
    const NEW: Self = RawTableInner::new();

    /// Creates a new empty hash table without allocating any memory.
    ///
    /// In effect this returns a table with exactly 1 bucket. However we can
    /// leave the data pointer dangling since that bucket is never accessed
    /// due to our load factor forcing us to always have at least 1 free bucket.
    #[inline]
    const fn new() -> Self {
        Self {
            // Be careful to cast the entire slice to a raw pointer.
            ctrl: unsafe { NonNull::new_unchecked(Group::static_empty() as *const _ as *mut u8) },
            bucket_mask: 0,
            items: 0,
            growth_left: 0,
        }
    }
}

impl RawTableInner {
    /// Allocates a new [`RawTableInner`] with the given number of buckets.
    /// The control bytes and buckets are left uninitialized.
    ///
    /// # Safety
    ///
    /// The caller of this function must ensure that the `buckets` is power of two
    /// and also initialize all control bytes of the length `self.bucket_mask + 1 +
    /// Group::WIDTH` with the [`EMPTY`] bytes.
    ///
    /// See also [`Allocator`] API for other safety concerns.
    ///
    /// [`Allocator`]: https://doc.rust-lang.org/alloc/alloc/trait.Allocator.html
    #[cfg_attr(feature = "inline-more", inline)]
    unsafe fn new_uninitialized<A>(
        alloc: &A,
        table_layout: TableLayout,
        buckets: usize,
    ) -> Result<Self, Error>
    where
        A: Allocator,
    {
        debug_assert!(buckets.is_power_of_two());

        // Avoid `Option::ok_or_else` because it bloats LLVM IR.
        let (layout, ctrl_offset) = match table_layout.calculate_layout_for(buckets) {
            Some(lco) => lco,
            None => return Err(Error::CapacityOverflow),
        };

        let ptr: NonNull<u8> = alloc.allocate(layout)?.cast();

        // SAFETY: null pointer will be caught in above check
        let ctrl = NonNull::new_unchecked(ptr.as_ptr().add(ctrl_offset));
        Ok(Self {
            ctrl,
            bucket_mask: buckets - 1,
            items: 0,
            growth_left: bucket_mask_to_capacity(buckets - 1),
        })
    }

    /// Attempts to allocate a new [`RawTableInner`] with at least enough
    /// capacity for inserting the given number of elements without reallocating.
    ///
    /// All the control bytes are initialized with the [`EMPTY`] bytes.
    #[inline]
    fn fallible_with_capacity<A>(
        alloc: &A,
        table_layout: TableLayout,
        capacity: usize,
    ) -> Result<Self, Error>
    where
        A: Allocator,
    {
        if capacity == 0 {
            Ok(Self::NEW)
        } else {
            // SAFETY: We checked that we could successfully allocate the new table, and then
            // initialized all control bytes with the constant `EMPTY` byte.
            unsafe {
                let buckets = capacity_to_buckets(capacity).ok_or(Error::CapacityOverflow)?;

                let result = Self::new_uninitialized(alloc, table_layout, buckets)?;
                // SAFETY: We checked that the table is allocated and therefore the table already has
                // `self.bucket_mask + 1 + Group::WIDTH` number of control bytes (see TableLayout::calculate_layout_for)
                // so writing `self.num_ctrl_bytes() == bucket_mask + 1 + Group::WIDTH` bytes is safe.
                result.ctrl(0).write_bytes(EMPTY, result.num_ctrl_bytes());

                Ok(result)
            }
        }
    }

    /// Allocates a new [`RawTableInner`] with at least enough capacity for inserting
    /// the given number of elements without reallocating.
    ///
    /// Panics if the new capacity exceeds [`isize::MAX`] bytes and [`abort`] the program
    /// in case of allocation error. Use [`fallible_with_capacity`] instead if you want to
    /// handle memory allocation failure.
    ///
    /// All the control bytes are initialized with the [`EMPTY`] bytes.
    ///
    /// [`fallible_with_capacity`]: RawTableInner::fallible_with_capacity
    fn try_with_capacity<A>(
        alloc: &A,
        table_layout: TableLayout,
        capacity: usize,
    ) -> Result<Self, Error>
    where
        A: Allocator,
    {
        // Avoid `Result::unwrap_or_else` because it bloats LLVM IR.
        Self::fallible_with_capacity(alloc, table_layout, capacity)
    }

    /// Fixes up an insertion slot due to false positives for groups smaller than the group width.
    /// This must only be used on insertion slots found by `find_insert_slot_in_group`.
    #[inline]
    unsafe fn fix_insert_slot(&self, mut index: usize) -> InsertSlot {
        // In tables smaller than the group width
        // (self.buckets() < Group::WIDTH), trailing control
        // bytes outside the range of the table are filled with
        // EMPTY entries. These will unfortunately trigger a
        // match, but once masked may point to a full bucket that
        // is already occupied. We detect this situation here and
        // perform a second scan starting at the beginning of the
        // table. This second scan is guaranteed to find an empty
        // slot (due to the load factor) before hitting the trailing
        // control bytes (containing EMPTY).
        if unlikely(self.is_bucket_full(index)) {
            debug_assert!(self.bucket_mask < Group::WIDTH);
            // SAFETY:
            //
            // * We are in range and `ptr = self.ctrl(0)` are valid for reads
            //   and properly aligned, because the table is already allocated
            //   (see `TableLayout::calculate_layout_for` and `ptr::read`);
            //
            // * For tables larger than the group width (self.buckets() >= Group::WIDTH),
            //   we will never end up in the given branch, since
            //   `(probe_seq.pos + bit) & self.bucket_mask` in `find_insert_slot_in_group` cannot
            //   return a full bucket index. For tables smaller than the group width, calling the
            //   `unwrap_unchecked` function is also
            //   safe, as the trailing control bytes outside the range of the table are filled
            //   with EMPTY bytes, so this second scan either finds an empty slot (due to the
            //   load factor) or hits the trailing control bytes (containing EMPTY).
            index = Group::load_aligned(self.ctrl(0))
                .match_empty_or_deleted()
                .lowest_set_bit()
                .unwrap_unchecked();
        }
        InsertSlot { index }
    }

    /// Finds the position to insert something in a group.
    /// This may have false positives and must be fixed up with `fix_insert_slot` before it's used.
    #[inline]
    fn find_insert_slot_in_group(&self, group: &Group, probe_seq: &ProbeSeq) -> Option<usize> {
        let bit = group.match_empty_or_deleted().lowest_set_bit();

        if likely(bit.is_some()) {
            Some((probe_seq.pos + bit.unwrap()) & self.bucket_mask)
        } else {
            None
        }
    }

    /// Searches for an element in the table, or a potential slot where that element could be
    /// inserted.
    ///
    /// This uses dynamic dispatch to reduce the amount of code generated, but that is
    /// eliminated by LLVM optimizations.
    #[inline]
    fn find_or_find_insert_slot_inner<C: ?Sized, E>(
        &self,
        cx: &mut C,
        hash: u64,
        eq: &dyn Fn(&mut C, usize) -> Result<bool, E>,
    ) -> Result<usize, ErrorOrInsertSlot<E>> {
        let mut insert_slot = None;

        let h2_hash = h2(hash);
        let mut probe_seq = self.probe_seq(hash);

        loop {
            let group = unsafe { Group::load(self.ctrl(probe_seq.pos)) };

            for bit in group.match_byte(h2_hash) {
                let index = (probe_seq.pos + bit) & self.bucket_mask;

                if likely(eq(cx, index).map_err(CustomError::Custom)?) {
                    return Ok(index);
                }
            }

            // We didn't find the element we were looking for in the group, try to get an
            // insertion slot from the group if we don't have one yet.
            if likely(insert_slot.is_none()) {
                insert_slot = self.find_insert_slot_in_group(&group, &probe_seq);
            }

            // Only stop the search if the group contains at least one empty element.
            // Otherwise, the element that we are looking for might be in a following group.
            if likely(group.match_empty().any_bit_set()) {
                // We must have found a insert slot by now, since the current group contains at
                // least one. For tables smaller than the group width, there will still be an
                // empty element in the current (and only) group due to the load factor.
                unsafe {
                    return Err(ErrorOrInsertSlot::InsertSlot(
                        self.fix_insert_slot(insert_slot.unwrap_unchecked()),
                    ));
                }
            }

            probe_seq.move_next(self.bucket_mask);
        }
    }

    /// Searches for an empty or deleted bucket which is suitable for inserting a new
    /// element and sets the hash for that slot. Returns an index of that slot and the
    /// old control byte stored in the found index.
    ///
    /// This function does not check if the given element exists in the table. Also,
    /// this function does not check if there is enough space in the table to insert
    /// a new element, so the caller must make ensure that the table has at least 1
    /// empty or deleted `bucket` or this function will never return (will go into
    /// an infinite loop).
    ///
    /// This function does not make any changes to the `data` parts of the table,
    /// or any changes to the the `items` or `growth_left` field of the table.
    ///
    /// # Safety
    ///
    /// The safety rules are directly derived from the safety rule for the
    /// [`RawTableInner::set_ctrl_h2`] methods. Thus, in order to uphold the safety
    /// contracts for that method, as well as for the correct logic of the work of this
    /// crate, you must observe the following rules when calling this function:
    ///
    /// * The [`RawTableInner`] has already been allocated;
    ///
    /// * The caller of this function must ensure that the "data" parts of the table
    ///   will have an entry in the returned index (matching the given hash) right
    ///   after calling this function.
    ///
    /// Calling this function on a table that has not been allocated results in
    /// [`undefined behavior`].
    ///
    /// The caller must independently increase the `items` field of the table, and also,
    /// if the old control byte was [`EMPTY`], then decrease the table's `growth_left`
    /// field, and do not change it if the old control byte was [`DELETED`].
    ///
    /// See also [`Bucket::as_ptr`] method, for more information about of properly removing
    /// or saving `element` from / into the [`RawTable`] / [`RawTableInner`].
    ///
    /// [`Bucket::as_ptr`]: Bucket::as_ptr
    /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
    /// [`RawTableInner::ctrl`]: RawTableInner::ctrl
    /// [`RawTableInner::set_ctrl_h2`]: RawTableInner::set_ctrl_h2
    #[inline]
    unsafe fn prepare_insert_slot(&mut self, hash: u64) -> (usize, u8) {
        let index: usize = self.find_insert_slot(hash).index;
        // SAFETY:
        // 1. The `find_insert_slot` function either returns an `index` less than or
        //    equal to `self.bucket_mask = self.buckets() - 1` of the table, or never
        //    returns if it cannot find an empty or deleted slot.
        // 2. The caller of this function guarantees that the table has already been
        //    allocated
        let old_ctrl = *self.ctrl(index);
        self.set_ctrl_h2(index, hash);
        (index, old_ctrl)
    }

    /// Searches for an empty or deleted bucket which is suitable for inserting
    /// a new element, returning the `index` for the new [`Bucket`].
    ///
    /// This function does not make any changes to the `data` part of the table, or any
    /// changes to the `items` or `growth_left` field of the table.
    ///
    /// The table must have at least 1 empty or deleted `bucket`, otherwise this function
    /// will never return (will go into an infinite loop) for tables larger than the group
    /// width, or return an index outside of the table indices range if the table is less
    /// than the group width.
    ///
    /// # Note
    ///
    /// Calling this function is always safe, but attempting to write data at
    /// the index returned by this function when the table is less than the group width
    /// and if there was not at least one empty bucket in the table will cause immediate
    /// [`undefined behavior`]. This is because in this case the function will return
    /// `self.bucket_mask + 1` as an index due to the trailing EMPTY control bytes outside
    /// the table range.
    ///
    /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
    #[inline]
    fn find_insert_slot(&self, hash: u64) -> InsertSlot {
        let mut probe_seq = self.probe_seq(hash);
        loop {
            // SAFETY:
            // * `ProbeSeq.pos` cannot be greater than `self.bucket_mask = self.buckets() - 1`
            //   of the table due to masking with `self.bucket_mask` and also because mumber of
            //   buckets is a power of two (see comment for masking below).
            //
            // * Even if `ProbeSeq.pos` returns `position == self.bucket_mask`, it is safe to
            //   call `Group::load` due to the extended control bytes range, which is
            //  `self.bucket_mask + 1 + Group::WIDTH` (in fact, this means that the last control
            //   byte will never be read for the allocated table);
            //
            // * Also, even if `RawTableInner` is not already allocated, `ProbeSeq.pos` will
            //   always return "0" (zero), so Group::load will read unaligned `Group::static_empty()`
            //   bytes, which is safe (see RawTableInner::new_in).
            unsafe {
                let group = Group::load(self.ctrl(probe_seq.pos));
                let index = self.find_insert_slot_in_group(&group, &probe_seq);

                if likely(index.is_some()) {
                    return self.fix_insert_slot(index.unwrap_unchecked());
                }
            }
            probe_seq.move_next(self.bucket_mask);
        }
    }

    /// Searches for an element in a table, returning the `index` of the found element.
    /// This uses dynamic dispatch to reduce the amount of code generated, but it is
    /// eliminated by LLVM optimizations.
    ///
    /// This function does not make any changes to the `data` part of the table, or any
    /// changes to the `items` or `growth_left` field of the table.
    ///
    /// The table must have at least 1 empty `bucket`, otherwise, if the
    /// `eq: &mut dyn FnMut(usize) -> bool` function does not return `true`,
    /// this function will also never return (will go into an infinite loop).
    #[inline(always)]
    fn find_inner<C: ?Sized, E>(
        &self,
        cx: &mut C,
        hash: u64,
        eq: &dyn Fn(&mut C, usize) -> Result<bool, E>,
    ) -> Result<Option<usize>, E> {
        let h2_hash = h2(hash);
        let mut probe_seq = self.probe_seq(hash);

        loop {
            // SAFETY:
            // * `ProbeSeq.pos` cannot be greater than `self.bucket_mask = self.buckets() - 1`
            //   of the table due to masking with `self.bucket_mask`.
            //
            // * Even if `ProbeSeq.pos` returns `position == self.bucket_mask`, it is safe to
            //   call `Group::load` due to the extended control bytes range, which is
            //  `self.bucket_mask + 1 + Group::WIDTH` (in fact, this means that the last control
            //   byte will never be read for the allocated table);
            //
            // * Also, even if `RawTableInner` is not already allocated, `ProbeSeq.pos` will
            //   always return "0" (zero), so Group::load will read unaligned `Group::static_empty()`
            //   bytes, which is safe (see RawTableInner::new_in).
            let group = unsafe { Group::load(self.ctrl(probe_seq.pos)) };

            for bit in group.match_byte(h2_hash) {
                // This is the same as `(probe_seq.pos + bit) % self.buckets()` because the number
                // of buckets is a power of two, and `self.bucket_mask = self.buckets() - 1`.
                let index = (probe_seq.pos + bit) & self.bucket_mask;

                if likely(eq(cx, index)?) {
                    return Ok(Some(index));
                }
            }

            if likely(group.match_empty().any_bit_set()) {
                return Ok(None);
            }

            probe_seq.move_next(self.bucket_mask);
        }
    }

    /// Prepares for rehashing data in place (that is, without allocating new memory).
    /// Converts all full index `control bytes` to `DELETED` and all `DELETED` control
    /// bytes to `EMPTY`, i.e. performs the following conversion:
    ///
    /// - `EMPTY` control bytes   -> `EMPTY`;
    /// - `DELETED` control bytes -> `EMPTY`;
    /// - `FULL` control bytes    -> `DELETED`.
    ///
    /// This function does not make any changes to the `data` parts of the table,
    /// or any changes to the the `items` or `growth_left` field of the table.
    ///
    /// # Safety
    ///
    /// You must observe the following safety rules when calling this function:
    ///
    /// * The [`RawTableInner`] has already been allocated;
    ///
    /// * The caller of this function must convert the `DELETED` bytes back to `FULL`
    ///   bytes when re-inserting them into their ideal position (which was impossible
    ///   to do during the first insert due to tombstones). If the caller does not do
    ///   this, then calling this function may result in a memory leak.
    ///
    /// * The [`RawTableInner`] must have properly initialized control bytes otherwise
    ///   calling this function results in [`undefined behavior`].
    ///
    /// Calling this function on a table that has not been allocated results in
    /// [`undefined behavior`].
    ///
    /// See also [`Bucket::as_ptr`] method, for more information about of properly removing
    /// or saving `data element` from / into the [`RawTable`] / [`RawTableInner`].
    ///
    /// [`Bucket::as_ptr`]: Bucket::as_ptr
    /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
    #[allow(clippy::mut_mut)]
    #[inline]
    unsafe fn prepare_rehash_in_place(&mut self) {
        // Bulk convert all full control bytes to DELETED, and all DELETED control bytes to EMPTY.
        // This effectively frees up all buckets containing a DELETED entry.
        //
        // SAFETY:
        // 1. `i` is guaranteed to be within bounds since we are iterating from zero to `buckets - 1`;
        // 2. Even if `i` will be `i == self.bucket_mask`, it is safe to call `Group::load_aligned`
        //    due to the extended control bytes range, which is `self.bucket_mask + 1 + Group::WIDTH`;
        // 3. The caller of this function guarantees that [`RawTableInner`] has already been allocated;
        // 4. We can use `Group::load_aligned` and `Group::store_aligned` here since we start from 0
        //    and go to the end with a step equal to `Group::WIDTH` (see TableLayout::calculate_layout_for).
        for i in (0..self.buckets()).step_by(Group::WIDTH) {
            let group = Group::load_aligned(self.ctrl(i));
            let group = group.convert_special_to_empty_and_full_to_deleted();
            group.store_aligned(self.ctrl(i));
        }

        // Fix up the trailing control bytes. See the comments in set_ctrl
        // for the handling of tables smaller than the group width.
        //
        // SAFETY: The caller of this function guarantees that [`RawTableInner`]
        // has already been allocated
        if unlikely(self.buckets() < Group::WIDTH) {
            // SAFETY: We have `self.bucket_mask + 1 + Group::WIDTH` number of control bytes,
            // so copying `self.buckets() == self.bucket_mask + 1` bytes with offset equal to
            // `Group::WIDTH` is safe
            self.ctrl(0)
                .copy_to(self.ctrl(Group::WIDTH), self.buckets());
        } else {
            // SAFETY: We have `self.bucket_mask + 1 + Group::WIDTH` number of
            // control bytes,so copying `Group::WIDTH` bytes with offset equal
            // to `self.buckets() == self.bucket_mask + 1` is safe
            self.ctrl(0)
                .copy_to(self.ctrl(self.buckets()), Group::WIDTH);
        }
    }

    /// Returns an iterator over every element in the table.
    ///
    /// # Safety
    ///
    /// If any of the following conditions are violated, the result
    /// is [`undefined behavior`]:
    ///
    /// * The caller has to ensure that the `RawTableInner` outlives the
    ///   `RawIter`. Because we cannot make the `next` method unsafe on
    ///   the `RawIter` struct, we have to make the `iter` method unsafe.
    ///
    /// * The [`RawTableInner`] must have properly initialized control bytes.
    ///
    /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
    #[inline]
    unsafe fn iter<T>(&self) -> RawIter<T> {
        // SAFETY:
        // 1. Since the caller of this function ensures that the control bytes
        //    are properly initialized and `self.data_end()` points to the start
        //    of the array of control bytes, therefore: `ctrl` is valid for reads,
        //    properly aligned to `Group::WIDTH` and points to the properly initialized
        //    control bytes.
        // 2. `data` bucket index in the table is equal to the `ctrl` index (i.e.
        //    equal to zero).
        // 3. We pass the exact value of buckets of the table to the function.
        //
        //                         `ctrl` points here (to the start
        //                         of the first control byte `CT0`)
        //                          ∨
        // [Pad], T_n, ..., T1, T0, |CT0, CT1, ..., CT_n|, Group::WIDTH
        //                           \________  ________/
        //                                    \/
        //       `n = buckets - 1`, i.e. `RawIndexTableInner::buckets() - 1`
        //
        // where: T0...T_n  - our stored data;
        //        CT0...CT_n - control bytes or metadata for `data`.
        let data = Bucket::from_base_index(self.data_end(), 0);
        RawIter {
            // SAFETY: See explanation above
            iter: RawIterRange::new(self.ctrl.as_ptr(), data, self.buckets()),
            items: self.items,
        }
    }

    /// Executes the destructors (if any) of the values stored in the table.
    ///
    /// # Note
    ///
    /// This function does not erase the control bytes of the table and does
    /// not make any changes to the `items` or `growth_left` fields of the
    /// table. If necessary, the caller of this function must manually set
    /// up these table fields, for example using the [`clear_no_drop`] function.
    ///
    /// Be careful during calling this function, because drop function of
    /// the elements can panic, and this can leave table in an inconsistent
    /// state.
    ///
    /// # Safety
    ///
    /// If `T` is a type that should be dropped and **the table is not empty**,
    /// calling this function more than once results in [`undefined behavior`].
    ///
    /// If `T` is not [`Copy`], attempting to use values stored in the table after
    /// calling this function may result in [`undefined behavior`].
    ///
    /// It is safe to call this function on a table that has not been allocated,
    /// on a table with uninitialized control bytes, and on a table with no actual
    /// data but with `Full` control bytes if `self.items == 0`.
    ///
    /// See also [`Bucket::drop`] / [`Bucket::as_ptr`] methods, for more information
    /// about of properly removing or saving `element` from / into the [`RawTable`] /
    /// [`RawTableInner`].
    ///
    /// [`Bucket::drop`]: Bucket::drop
    /// [`Bucket::as_ptr`]: Bucket::as_ptr
    /// [`clear_no_drop`]: RawTableInner::clear_no_drop
    /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
    unsafe fn drop_elements<T>(&mut self) {
        // Check that `self.items != 0`. Protects against the possibility
        // of creating an iterator on an table with uninitialized control bytes.
        if T::NEEDS_DROP && self.items != 0 {
            // SAFETY: We know for sure that RawTableInner will outlive the
            // returned `RawIter` iterator, and the caller of this function
            // must uphold the safety contract for `drop_elements` method.
            for item in self.iter::<T>() {
                // SAFETY: The caller must uphold the safety contract for
                // `drop_elements` method.
                item.drop();
            }
        }
    }

    /// Executes the destructors (if any) of the values stored in the table and than
    /// deallocates the table.
    ///
    /// # Note
    ///
    /// Calling this function automatically makes invalid (dangling) all instances of
    /// buckets ([`Bucket`]) and makes invalid (dangling) the `ctrl` field of the table.
    ///
    /// This function does not make any changes to the `bucket_mask`, `items` or `growth_left`
    /// fields of the table. If necessary, the caller of this function must manually set
    /// up these table fields.
    ///
    /// # Safety
    ///
    /// If any of the following conditions are violated, the result is [`undefined behavior`]:
    ///
    /// * Calling this function more than once;
    ///
    /// * The `alloc` must be the same [`Allocator`] as the `Allocator` that was used
    ///   to allocate this table.
    ///
    /// * The `table_layout` must be the same [`TableLayout`] as the `TableLayout` that
    ///   was used to allocate this table.
    ///
    /// The caller of this function should pay attention to the possibility of the
    /// elements' drop function panicking, because this:
    ///
    ///    * May leave the table in an inconsistent state;
    ///
    ///    * Memory is never deallocated, so a memory leak may occur.
    ///
    /// Attempt to use the `ctrl` field of the table (dereference) after calling this
    /// function results in [`undefined behavior`].
    ///
    /// It is safe to call this function on a table that has not been allocated,
    /// on a table with uninitialized control bytes, and on a table with no actual
    /// data but with `Full` control bytes if `self.items == 0`.
    ///
    /// See also [`RawTableInner::drop_elements`] or [`RawTableInner::free_buckets`]
    /// for more  information.
    ///
    /// [`RawTableInner::drop_elements`]: RawTableInner::drop_elements
    /// [`RawTableInner::free_buckets`]: RawTableInner::free_buckets
    /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
    unsafe fn drop_inner_table<T, A: Allocator>(&mut self, alloc: &A, table_layout: TableLayout) {
        if !self.is_empty_singleton() {
            unsafe {
                // SAFETY: The caller must uphold the safety contract for `drop_inner_table` method.
                self.drop_elements::<T>();
                // SAFETY:
                // 1. We have checked that our table is allocated.
                // 2. The caller must uphold the safety contract for `drop_inner_table` method.
                self.free_buckets(alloc, table_layout);
            }
        }
    }

    #[inline]
    unsafe fn bucket<T>(&self, index: usize) -> Bucket<T> {
        debug_assert_ne!(self.bucket_mask, 0);
        debug_assert!(index < self.buckets());
        Bucket::from_base_index(self.data_end(), index)
    }

    #[inline]
    unsafe fn bucket_ptr(&self, index: usize, size_of: usize) -> *mut u8 {
        debug_assert_ne!(self.bucket_mask, 0);
        debug_assert!(index < self.buckets());
        let base: *mut u8 = self.data_end().as_ptr();
        base.sub((index + 1) * size_of)
    }

    #[inline]
    unsafe fn data_end<T>(&self) -> NonNull<T> {
        NonNull::new_unchecked(self.ctrl.as_ptr().cast())
    }

    /// Returns an iterator-like object for a probe sequence on the table.
    ///
    /// This iterator never terminates, but is guaranteed to visit each bucket
    /// group exactly once. The loop using `probe_seq` must terminate upon
    /// reaching a group containing an empty bucket.
    #[inline]
    fn probe_seq(&self, hash: u64) -> ProbeSeq {
        ProbeSeq {
            pos: h1(hash) & self.bucket_mask,
            stride: 0,
        }
    }

    /// Returns the index of a bucket for which a value must be inserted if there is enough rooom
    /// in the table, otherwise returns error
    #[inline]
    unsafe fn prepare_insert_no_grow(&mut self, hash: u64) -> Result<usize, ()> {
        let index = self.find_insert_slot(hash).index;
        let old_ctrl = *self.ctrl(index);
        if unlikely(self.growth_left == 0 && special_is_empty(old_ctrl)) {
            Err(())
        } else {
            self.record_item_insert_at(index, old_ctrl, hash);
            Ok(index)
        }
    }

    #[inline]
    unsafe fn record_item_insert_at(&mut self, index: usize, old_ctrl: u8, hash: u64) {
        self.growth_left -= usize::from(special_is_empty(old_ctrl));
        self.set_ctrl_h2(index, hash);
        self.items += 1;
    }

    #[inline]
    fn is_in_same_group(&self, i: usize, new_i: usize, hash: u64) -> bool {
        let probe_seq_pos = self.probe_seq(hash).pos;
        let probe_index =
            |pos: usize| (pos.wrapping_sub(probe_seq_pos) & self.bucket_mask) / Group::WIDTH;
        probe_index(i) == probe_index(new_i)
    }

    /// Sets a control byte to the hash, and possibly also the replicated control byte at
    /// the end of the array.
    ///
    /// This function does not make any changes to the `data` parts of the table,
    /// or any changes to the the `items` or `growth_left` field of the table.
    ///
    /// # Safety
    ///
    /// The safety rules are directly derived from the safety rules for [`RawTableInner::set_ctrl`]
    /// method. Thus, in order to uphold the safety contracts for the method, you must observe the
    /// following rules when calling this function:
    ///
    /// * The [`RawTableInner`] has already been allocated;
    ///
    /// * The `index` must not be greater than the `RawTableInner.bucket_mask`, i.e.
    ///   `index <= RawTableInner.bucket_mask` or, in other words, `(index + 1)` must
    ///   be no greater than the number returned by the function [`RawTableInner::buckets`].
    ///
    /// Calling this function on a table that has not been allocated results in [`undefined behavior`].
    ///
    /// See also [`Bucket::as_ptr`] method, for more information about of properly removing
    /// or saving `data element` from / into the [`RawTable`] / [`RawTableInner`].
    ///
    /// [`RawTableInner::set_ctrl`]: RawTableInner::set_ctrl
    /// [`RawTableInner::buckets`]: RawTableInner::buckets
    /// [`Bucket::as_ptr`]: Bucket::as_ptr
    /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
    #[inline]
    unsafe fn set_ctrl_h2(&mut self, index: usize, hash: u64) {
        // SAFETY: The caller must uphold the safety rules for the [`RawTableInner::set_ctrl_h2`]
        self.set_ctrl(index, h2(hash));
    }

    /// Replaces the hash in the control byte at the given index with the provided one,
    /// and possibly also replicates the new control byte at the end of the array of control
    /// bytes, returning the old control byte.
    ///
    /// This function does not make any changes to the `data` parts of the table,
    /// or any changes to the the `items` or `growth_left` field of the table.
    ///
    /// # Safety
    ///
    /// The safety rules are directly derived from the safety rules for [`RawTableInner::set_ctrl_h2`]
    /// and [`RawTableInner::ctrl`] methods. Thus, in order to uphold the safety contracts for both
    /// methods, you must observe the following rules when calling this function:
    ///
    /// * The [`RawTableInner`] has already been allocated;
    ///
    /// * The `index` must not be greater than the `RawTableInner.bucket_mask`, i.e.
    ///   `index <= RawTableInner.bucket_mask` or, in other words, `(index + 1)` must
    ///   be no greater than the number returned by the function [`RawTableInner::buckets`].
    ///
    /// Calling this function on a table that has not been allocated results in [`undefined behavior`].
    ///
    /// See also [`Bucket::as_ptr`] method, for more information about of properly removing
    /// or saving `data element` from / into the [`RawTable`] / [`RawTableInner`].
    ///
    /// [`RawTableInner::set_ctrl_h2`]: RawTableInner::set_ctrl_h2
    /// [`RawTableInner::buckets`]: RawTableInner::buckets
    /// [`Bucket::as_ptr`]: Bucket::as_ptr
    /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
    #[inline]
    unsafe fn replace_ctrl_h2(&mut self, index: usize, hash: u64) -> u8 {
        // SAFETY: The caller must uphold the safety rules for the [`RawTableInner::replace_ctrl_h2`]
        let prev_ctrl = *self.ctrl(index);
        self.set_ctrl_h2(index, hash);
        prev_ctrl
    }

    /// Sets a control byte, and possibly also the replicated control byte at
    /// the end of the array.
    ///
    /// This function does not make any changes to the `data` parts of the table,
    /// or any changes to the the `items` or `growth_left` field of the table.
    ///
    /// # Safety
    ///
    /// You must observe the following safety rules when calling this function:
    ///
    /// * The [`RawTableInner`] has already been allocated;
    ///
    /// * The `index` must not be greater than the `RawTableInner.bucket_mask`, i.e.
    ///   `index <= RawTableInner.bucket_mask` or, in other words, `(index + 1)` must
    ///   be no greater than the number returned by the function [`RawTableInner::buckets`].
    ///
    /// Calling this function on a table that has not been allocated results in [`undefined behavior`].
    ///
    /// See also [`Bucket::as_ptr`] method, for more information about of properly removing
    /// or saving `data element` from / into the [`RawTable`] / [`RawTableInner`].
    ///
    /// [`RawTableInner::buckets`]: RawTableInner::buckets
    /// [`Bucket::as_ptr`]: Bucket::as_ptr
    /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
    #[inline]
    unsafe fn set_ctrl(&mut self, index: usize, ctrl: u8) {
        // Replicate the first Group::WIDTH control bytes at the end of
        // the array without using a branch. If the tables smaller than
        // the group width (self.buckets() < Group::WIDTH),
        // `index2 = Group::WIDTH + index`, otherwise `index2` is:
        //
        // - If index >= Group::WIDTH then index == index2.
        // - Otherwise index2 == self.bucket_mask + 1 + index.
        //
        // The very last replicated control byte is never actually read because
        // we mask the initial index for unaligned loads, but we write it
        // anyways because it makes the set_ctrl implementation simpler.
        //
        // If there are fewer buckets than Group::WIDTH then this code will
        // replicate the buckets at the end of the trailing group. For example
        // with 2 buckets and a group size of 4, the control bytes will look
        // like this:
        //
        //     Real    |             Replicated
        // ---------------------------------------------
        // | [A] | [B] | [EMPTY] | [EMPTY] | [A] | [B] |
        // ---------------------------------------------

        // This is the same as `(index.wrapping_sub(Group::WIDTH)) % self.buckets() + Group::WIDTH`
        // because the number of buckets is a power of two, and `self.bucket_mask = self.buckets() - 1`.
        let index2 = ((index.wrapping_sub(Group::WIDTH)) & self.bucket_mask) + Group::WIDTH;

        // SAFETY: The caller must uphold the safety rules for the [`RawTableInner::set_ctrl`]
        *self.ctrl(index) = ctrl;
        *self.ctrl(index2) = ctrl;
    }

    /// Returns a pointer to a control byte.
    ///
    /// # Safety
    ///
    /// For the allocated [`RawTableInner`], the result is [`Undefined Behavior`],
    /// if the `index` is greater than the `self.bucket_mask + 1 + Group::WIDTH`.
    /// In that case, calling this function with `index == self.bucket_mask + 1 + Group::WIDTH`
    /// will return a pointer to the end of the allocated table and it is useless on its own.
    ///
    /// Calling this function with `index >= self.bucket_mask + 1 + Group::WIDTH` on a
    /// table that has not been allocated results in [`Undefined Behavior`].
    ///
    /// So to satisfy both requirements you should always follow the rule that
    /// `index < self.bucket_mask + 1 + Group::WIDTH`
    ///
    /// Calling this function on [`RawTableInner`] that are not already allocated is safe
    /// for read-only purpose.
    ///
    /// See also [`Bucket::as_ptr()`] method, for more information about of properly removing
    /// or saving `data element` from / into the [`RawTable`] / [`RawTableInner`].
    ///
    /// [`Bucket::as_ptr()`]: Bucket::as_ptr()
    /// [`Undefined Behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
    #[inline]
    unsafe fn ctrl(&self, index: usize) -> *mut u8 {
        debug_assert!(index < self.num_ctrl_bytes());
        // SAFETY: The caller must uphold the safety rules for the [`RawTableInner::ctrl`]
        self.ctrl.as_ptr().add(index)
    }

    #[inline]
    fn buckets(&self) -> usize {
        self.bucket_mask + 1
    }

    /// Checks whether the bucket at `index` is full.
    ///
    /// # Safety
    ///
    /// The caller must ensure `index` is less than the number of buckets.
    #[inline]
    unsafe fn is_bucket_full(&self, index: usize) -> bool {
        debug_assert!(index < self.buckets());
        is_full(*self.ctrl(index))
    }

    #[inline]
    fn num_ctrl_bytes(&self) -> usize {
        self.bucket_mask + 1 + Group::WIDTH
    }

    #[inline]
    fn is_empty_singleton(&self) -> bool {
        self.bucket_mask == 0
    }

    /// Attempts to allocate a new hash table with at least enough capacity
    /// for inserting the given number of elements without reallocating,
    /// and return it inside ScopeGuard to protect against panic in the hash
    /// function.
    ///
    /// # Note
    ///
    /// It is recommended (but not required):
    ///
    /// * That the new table's `capacity` be greater than or equal to `self.items`.
    ///
    /// * The `alloc` is the same [`Allocator`] as the `Allocator` used
    ///   to allocate this table.
    ///
    /// * The `table_layout` is the same [`TableLayout`] as the `TableLayout` used
    ///   to allocate this table.
    ///
    /// If `table_layout` does not match the `TableLayout` that was used to allocate
    /// this table, then using `mem::swap` with the `self` and the new table returned
    /// by this function results in [`undefined behavior`].
    ///
    /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
    #[allow(clippy::mut_mut)]
    #[inline]
    fn prepare_resize<'a, A>(
        &self,
        alloc: &'a A,
        table_layout: TableLayout,
        capacity: usize,
    ) -> Result<ScopeGuard<Self, impl FnMut(&mut Self) + 'a>, Error>
    where
        A: Allocator,
    {
        debug_assert!(self.items <= capacity);

        // Allocate and initialize the new table.
        let new_table = RawTableInner::fallible_with_capacity(alloc, table_layout, capacity)?;

        // The hash function may panic, in which case we simply free the new
        // table without dropping any elements that may have been copied into
        // it.
        //
        // This guard is also used to free the old table on success, see
        // the comment at the bottom of this function.
        Ok(guard(new_table, move |self_| {
            if !self_.is_empty_singleton() {
                // SAFETY:
                // 1. We have checked that our table is allocated.
                // 2. We know for sure that the `alloc` and `table_layout` matches the
                //    [`Allocator`] and [`TableLayout`] used to allocate this table.
                unsafe { self_.free_buckets(alloc, table_layout) };
            }
        }))
    }

    /// Reserves or rehashes to make room for `additional` more elements.
    ///
    /// This uses dynamic dispatch to reduce the amount of
    /// code generated, but it is eliminated by LLVM optimizations when inlined.
    ///
    /// # Safety
    ///
    /// If any of the following conditions are violated, the result is
    /// [`undefined behavior`]:
    ///
    /// * The `alloc` must be the same [`Allocator`] as the `Allocator` used
    ///   to allocate this table.
    ///
    /// * The `layout` must be the same [`TableLayout`] as the `TableLayout`
    ///   used to allocate this table.
    ///
    /// * The `drop` function (`fn(*mut u8)`) must be the actual drop function of
    ///   the elements stored in the table.
    ///
    /// * The [`RawTableInner`] must have properly initialized control bytes.
    ///
    /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
    #[allow(clippy::inline_always)]
    #[inline(always)]
    unsafe fn reserve_rehash_inner<C: ?Sized, E, A>(
        &mut self,
        cx: &mut C,
        alloc: &A,
        additional: usize,
        hasher: &dyn Fn(&mut C, &mut Self, usize) -> Result<u64, E>,
        layout: TableLayout,
        drop: Option<fn(*mut u8)>,
    ) -> Result<(), CustomError<E>>
    where
        A: Allocator,
    {
        // Avoid `Option::ok_or_else` because it bloats LLVM IR.
        let new_items = match self.items.checked_add(additional) {
            Some(new_items) => new_items,
            None => return Err(CustomError::from(Error::CapacityOverflow)),
        };
        let full_capacity = bucket_mask_to_capacity(self.bucket_mask);
        if new_items <= full_capacity / 2 {
            // Rehash in-place without re-allocating if we have plenty of spare
            // capacity that is locked up due to DELETED entries.

            // SAFETY:
            // 1. We know for sure that `[`RawTableInner`]` has already been allocated
            //    (since new_items <= full_capacity / 2);
            // 2. The caller ensures that `drop` function is the actual drop function of
            //    the elements stored in the table.
            // 3. The caller ensures that `layout` matches the [`TableLayout`] that was
            //    used to allocate this table.
            // 4. The caller ensures that the control bytes of the `RawTableInner`
            //    are already initialized.
            self.rehash_in_place(cx, hasher, layout.size, drop)
                .map_err(CustomError::Custom)?;
            Ok(())
        } else {
            // Otherwise, conservatively resize to at least the next size up
            // to avoid churning deletes into frequent rehashes.
            //
            // SAFETY:
            // 1. We know for sure that `capacity >= self.items`.
            // 2. The caller ensures that `alloc` and `layout` matches the [`Allocator`] and
            //    [`TableLayout`] that were used to allocate this table.
            // 3. The caller ensures that the control bytes of the `RawTableInner`
            //    are already initialized.
            self.resize_inner(
                cx,
                alloc,
                usize::max(new_items, full_capacity + 1),
                hasher,
                layout,
            )
        }
    }

    /// Returns an iterator over full buckets indices in the table.
    ///
    /// # Safety
    ///
    /// Behavior is undefined if any of the following conditions are violated:
    ///
    /// * The caller has to ensure that the `RawTableInner` outlives the
    ///   `FullBucketsIndices`. Because we cannot make the `next` method
    ///   unsafe on the `FullBucketsIndices` struct, we have to make the
    ///   `full_buckets_indices` method unsafe.
    ///
    /// * The [`RawTableInner`] must have properly initialized control bytes.
    #[inline(always)]
    unsafe fn full_buckets_indices(&self) -> FullBucketsIndices {
        // SAFETY:
        // 1. Since the caller of this function ensures that the control bytes
        //    are properly initialized and `self.ctrl(0)` points to the start
        //    of the array of control bytes, therefore: `ctrl` is valid for reads,
        //    properly aligned to `Group::WIDTH` and points to the properly initialized
        //    control bytes.
        // 2. The value of `items` is equal to the amount of data (values) added
        //    to the table.
        //
        //                         `ctrl` points here (to the start
        //                         of the first control byte `CT0`)
        //                          ∨
        // [Pad], T_n, ..., T1, T0, |CT0, CT1, ..., CT_n|, Group::WIDTH
        //                           \________  ________/
        //                                    \/
        //       `n = buckets - 1`, i.e. `RawIndexTableInner::buckets() - 1`
        //
        // where: T0...T_n  - our stored data;
        //        CT0...CT_n - control bytes or metadata for `data`.
        let ctrl = NonNull::new_unchecked(self.ctrl(0));

        FullBucketsIndices {
            // Load the first group
            // SAFETY: See explanation above.
            current_group: Group::load_aligned(ctrl.as_ptr()).match_full().into_iter(),
            group_first_index: 0,
            ctrl,
            items: self.items,
        }
    }

    /// Allocates a new table of a different size and moves the contents of the
    /// current table into it.
    ///
    /// This uses dynamic dispatch to reduce the amount of
    /// code generated, but it is eliminated by LLVM optimizations when inlined.
    ///
    /// # Safety
    ///
    /// If any of the following conditions are violated, the result is
    /// [`undefined behavior`]:
    ///
    /// * The `alloc` must be the same [`Allocator`] as the `Allocator` used
    ///   to allocate this table;
    ///
    /// * The `layout` must be the same [`TableLayout`] as the `TableLayout`
    ///   used to allocate this table;
    ///
    /// * The [`RawTableInner`] must have properly initialized control bytes.
    ///
    /// The caller of this function must ensure that `capacity >= self.items`
    /// otherwise:
    ///
    /// * If `self.items != 0`, calling of this function with `capacity == 0`
    ///   results in [`undefined behavior`].
    ///
    /// * If `capacity_to_buckets(capacity) < Group::WIDTH` and
    ///   `self.items > capacity_to_buckets(capacity)` calling this function
    ///   results in [`undefined behavior`].
    ///
    /// * If `capacity_to_buckets(capacity) >= Group::WIDTH` and
    ///   `self.items > capacity_to_buckets(capacity)` calling this function
    ///   are never return (will go into an infinite loop).
    ///
    /// Note: It is recommended (but not required) that the new table's `capacity`
    /// be greater than or equal to `self.items`. In case if `capacity <= self.items`
    /// this function can never return. See [`RawTableInner::find_insert_slot`] for
    /// more information.
    ///
    /// [`RawTableInner::find_insert_slot`]: RawTableInner::find_insert_slot
    /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
    #[allow(clippy::inline_always)]
    #[inline(always)]
    unsafe fn resize_inner<C: ?Sized, E, A>(
        &mut self,
        cx: &mut C,
        alloc: &A,
        capacity: usize,
        hasher: &dyn Fn(&mut C, &mut Self, usize) -> Result<u64, E>,
        layout: TableLayout,
    ) -> Result<(), CustomError<E>>
    where
        A: Allocator,
    {
        // SAFETY: We know for sure that `alloc` and `layout` matches the [`Allocator`] and [`TableLayout`]
        // that were used to allocate this table.
        let mut new_table = self.prepare_resize(alloc, layout, capacity)?;

        // SAFETY: We know for sure that RawTableInner will outlive the
        // returned `FullBucketsIndices` iterator, and the caller of this
        // function ensures that the control bytes are properly initialized.
        for full_byte_index in self.full_buckets_indices() {
            // This may panic.
            let hash = hasher(cx, self, full_byte_index).map_err(CustomError::Custom)?;

            // We can use a simpler version of insert() here since:
            // - there are no DELETED entries.
            // - we know there is enough space in the table.
            // - all elements are unique.
            //
            // SAFETY:
            // 1. The caller of this function guarantees that `capacity > 0`
            //    so `new_table` must already have some allocated memory.
            // 2. We set `growth_left` and `items` fields of the new table
            //    after the loop.
            // 3. We insert into the table, at the returned index, the data
            //    matching the given hash immediately after calling this function.
            let (new_index, _) = new_table.prepare_insert_slot(hash);

            // SAFETY:
            //
            // * `src` is valid for reads of `layout.size` bytes, since the
            //   table is alive and the `full_byte_index` is guaranteed to be
            //   within bounds (see `FullBucketsIndices::next_impl`);
            //
            // * `dst` is valid for writes of `layout.size` bytes, since the
            //   caller ensures that `table_layout` matches the [`TableLayout`]
            //   that was used to allocate old table and we have the `new_index`
            //   returned by `prepare_insert_slot`.
            //
            // * Both `src` and `dst` are properly aligned.
            //
            // * Both `src` and `dst` point to different region of memory.
            ptr::copy_nonoverlapping(
                self.bucket_ptr(full_byte_index, layout.size),
                new_table.bucket_ptr(new_index, layout.size),
                layout.size,
            );
        }

        // The hash function didn't panic, so we can safely set the
        // `growth_left` and `items` fields of the new table.
        new_table.growth_left -= self.items;
        new_table.items = self.items;

        // We successfully copied all elements without panicking. Now replace
        // self with the new table. The old table will have its memory freed but
        // the items will not be dropped (since they have been moved into the
        // new table).
        // SAFETY: The caller ensures that `table_layout` matches the [`TableLayout`]
        // that was used to allocate this table.
        mem::swap(self, &mut new_table);

        Ok(())
    }

    /// Rehashes the contents of the table in place (i.e. without changing the
    /// allocation).
    ///
    /// If `hasher` panics then some the table's contents may be lost.
    ///
    /// This uses dynamic dispatch to reduce the amount of
    /// code generated, but it is eliminated by LLVM optimizations when inlined.
    ///
    /// # Safety
    ///
    /// If any of the following conditions are violated, the result is [`undefined behavior`]:
    ///
    /// * The `size_of` must be equal to the size of the elements stored in the table;
    ///
    /// * The `drop` function (`fn(*mut u8)`) must be the actual drop function of
    ///   the elements stored in the table.
    ///
    /// * The [`RawTableInner`] has already been allocated;
    ///
    /// * The [`RawTableInner`] must have properly initialized control bytes.
    ///
    /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
    #[allow(clippy::inline_always)]
    #[cfg_attr(feature = "inline-more", inline(always))]
    #[cfg_attr(not(feature = "inline-more"), inline)]
    unsafe fn rehash_in_place<C: ?Sized, E>(
        &mut self,
        cx: &mut C,
        hasher: &dyn Fn(&mut C, &mut Self, usize) -> Result<u64, E>,
        size_of: usize,
        drop: Option<fn(*mut u8)>,
    ) -> Result<(), E> {
        // If the hash function panics then properly clean up any elements
        // that we haven't rehashed yet. We unfortunately can't preserve the
        // element since we lost their hash and have no way of recovering it
        // without risking another panic.
        self.prepare_rehash_in_place();

        let mut guard = guard(self, move |self_| {
            if let Some(drop) = drop {
                for i in 0..self_.buckets() {
                    if *self_.ctrl(i) == DELETED {
                        self_.set_ctrl(i, EMPTY);
                        drop(self_.bucket_ptr(i, size_of));
                        self_.items -= 1;
                    }
                }
            }
            self_.growth_left = bucket_mask_to_capacity(self_.bucket_mask) - self_.items;
        });

        // At this point, DELETED elements are elements that we haven't
        // rehashed yet. Find them and re-insert them at their ideal
        // position.
        'outer: for i in 0..guard.buckets() {
            if *guard.ctrl(i) != DELETED {
                continue;
            }

            let i_p = guard.bucket_ptr(i, size_of);

            'inner: loop {
                // Hash the current item
                let hash = hasher(cx, *guard, i)?;

                // Search for a suitable place to put it
                let new_i = guard.find_insert_slot(hash).index;

                // Probing works by scanning through all of the control
                // bytes in groups, which may not be aligned to the group
                // size. If both the new and old position fall within the
                // same unaligned group, then there is no benefit in moving
                // it and we can just continue to the next item.
                if likely(guard.is_in_same_group(i, new_i, hash)) {
                    guard.set_ctrl_h2(i, hash);
                    continue 'outer;
                }

                let new_i_p = guard.bucket_ptr(new_i, size_of);

                // We are moving the current item to a new position. Write
                // our H2 to the control byte of the new position.
                let prev_ctrl = guard.replace_ctrl_h2(new_i, hash);
                if prev_ctrl == EMPTY {
                    guard.set_ctrl(i, EMPTY);
                    // If the target slot is empty, simply move the current
                    // element into the new slot and clear the old control
                    // byte.
                    ptr::copy_nonoverlapping(i_p, new_i_p, size_of);
                    continue 'outer;
                } else {
                    // If the target slot is occupied, swap the two elements
                    // and then continue processing the element that we just
                    // swapped into the old slot.
                    debug_assert_eq!(prev_ctrl, DELETED);
                    ptr::swap_nonoverlapping(i_p, new_i_p, size_of);
                    continue 'inner;
                }
            }
        }

        guard.growth_left = bucket_mask_to_capacity(guard.bucket_mask) - guard.items;

        mem::forget(guard);
        Ok(())
    }

    /// Deallocates the table without dropping any entries.
    ///
    /// # Note
    ///
    /// This function must be called only after [`drop_elements`](RawTable::drop_elements),
    /// else it can lead to leaking of memory. Also calling this function automatically
    /// makes invalid (dangling) all instances of buckets ([`Bucket`]) and makes invalid
    /// (dangling) the `ctrl` field of the table.
    ///
    /// # Safety
    ///
    /// If any of the following conditions are violated, the result is [`Undefined Behavior`]:
    ///
    /// * The [`RawTableInner`] has already been allocated;
    ///
    /// * The `alloc` must be the same [`Allocator`] as the `Allocator` that was used
    ///   to allocate this table.
    ///
    /// * The `table_layout` must be the same [`TableLayout`] as the `TableLayout` that was used
    ///   to allocate this table.
    ///
    /// See also [`GlobalAlloc::dealloc`] or [`Allocator::deallocate`] for more  information.
    ///
    /// [`Undefined Behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
    /// [`GlobalAlloc::dealloc`]: https://doc.rust-lang.org/alloc/alloc/trait.GlobalAlloc.html#tymethod.dealloc
    /// [`Allocator::deallocate`]: https://doc.rust-lang.org/alloc/alloc/trait.Allocator.html#tymethod.deallocate
    #[inline]
    unsafe fn free_buckets<A>(&mut self, alloc: &A, table_layout: TableLayout)
    where
        A: Allocator,
    {
        // SAFETY: The caller must uphold the safety contract for `free_buckets`
        // method.
        let (ptr, layout) = self.allocation_info(table_layout);
        alloc.deallocate(ptr, layout);
    }

    /// Returns a pointer to the allocated memory and the layout that was used to
    /// allocate the table.
    ///
    /// # Safety
    ///
    /// Caller of this function must observe the following safety rules:
    ///
    /// * The [`RawTableInner`] has already been allocated, otherwise
    ///   calling this function results in [`undefined behavior`]
    ///
    /// * The `table_layout` must be the same [`TableLayout`] as the `TableLayout`
    ///   that was used to allocate this table. Failure to comply with this condition
    ///   may result in [`undefined behavior`].
    ///
    /// See also [`GlobalAlloc::dealloc`] or [`Allocator::deallocate`] for more  information.
    ///
    /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
    /// [`GlobalAlloc::dealloc`]: https://doc.rust-lang.org/alloc/alloc/trait.GlobalAlloc.html#tymethod.dealloc
    /// [`Allocator::deallocate`]: https://doc.rust-lang.org/alloc/alloc/trait.Allocator.html#tymethod.deallocate
    #[inline]
    unsafe fn allocation_info(&self, table_layout: TableLayout) -> (NonNull<u8>, Layout) {
        debug_assert!(
            !self.is_empty_singleton(),
            "this function can only be called on non-empty tables"
        );

        // Avoid `Option::unwrap_or_else` because it bloats LLVM IR.
        let (layout, ctrl_offset) = match table_layout.calculate_layout_for(self.buckets()) {
            Some(lco) => lco,
            None => unsafe { hint::unreachable_unchecked() },
        };
        (
            // SAFETY: The caller must uphold the safety contract for `allocation_info` method.
            unsafe { NonNull::new_unchecked(self.ctrl.as_ptr().sub(ctrl_offset)) },
            layout,
        )
    }

    /// Returns a pointer to the allocated memory and the layout that was used to
    /// allocate the table. If [`RawTableInner`] has not been allocated, this
    /// function return `dangling` pointer and `()` (unit) layout.
    ///
    /// # Safety
    ///
    /// The `table_layout` must be the same [`TableLayout`] as the `TableLayout`
    /// that was used to allocate this table. Failure to comply with this condition
    /// may result in [`undefined behavior`].
    ///
    /// See also [`GlobalAlloc::dealloc`] or [`Allocator::deallocate`] for more  information.
    ///
    /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
    /// [`GlobalAlloc::dealloc`]: https://doc.rust-lang.org/alloc/alloc/trait.GlobalAlloc.html#tymethod.dealloc
    /// [`Allocator::deallocate`]: https://doc.rust-lang.org/alloc/alloc/trait.Allocator.html#tymethod.deallocate
    unsafe fn allocation_info_or_zero(&self, table_layout: TableLayout) -> (NonNull<u8>, Layout) {
        if self.is_empty_singleton() {
            (NonNull::dangling(), Layout::new::<()>())
        } else {
            // SAFETY:
            // 1. We have checked that our table is allocated.
            // 2. The caller ensures that `table_layout` matches the [`TableLayout`]
            // that was used to allocate this table.
            unsafe { self.allocation_info(table_layout) }
        }
    }

    /// Marks all table buckets as empty without dropping their contents.
    #[inline]
    fn clear_no_drop(&mut self) {
        if !self.is_empty_singleton() {
            unsafe {
                self.ctrl(0).write_bytes(EMPTY, self.num_ctrl_bytes());
            }
        }
        self.items = 0;
        self.growth_left = bucket_mask_to_capacity(self.bucket_mask);
    }

    /// Erases the [`Bucket`]'s control byte at the given index so that it does not
    /// triggered as full, decreases the `items` of the table and, if it can be done,
    /// increases `self.growth_left`.
    ///
    /// This function does not actually erase / drop the [`Bucket`] itself, i.e. it
    /// does not make any changes to the `data` parts of the table. The caller of this
    /// function must take care to properly drop the `data`, otherwise calling this
    /// function may result in a memory leak.
    ///
    /// # Safety
    ///
    /// You must observe the following safety rules when calling this function:
    ///
    /// * The [`RawTableInner`] has already been allocated;
    ///
    /// * It must be the full control byte at the given position;
    ///
    /// * The `index` must not be greater than the `RawTableInner.bucket_mask`, i.e.
    ///   `index <= RawTableInner.bucket_mask` or, in other words, `(index + 1)` must
    ///   be no greater than the number returned by the function [`RawTableInner::buckets`].
    ///
    /// Calling this function on a table that has not been allocated results in [`undefined behavior`].
    ///
    /// Calling this function on a table with no elements is unspecified, but calling subsequent
    /// functions is likely to result in [`undefined behavior`] due to overflow subtraction
    /// (`self.items -= 1 cause overflow when self.items == 0`).
    ///
    /// See also [`Bucket::as_ptr`] method, for more information about of properly removing
    /// or saving `data element` from / into the [`RawTable`] / [`RawTableInner`].
    ///
    /// [`RawTableInner::buckets`]: RawTableInner::buckets
    /// [`Bucket::as_ptr`]: Bucket::as_ptr
    /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
    #[inline]
    unsafe fn erase(&mut self, index: usize) {
        debug_assert!(self.is_bucket_full(index));

        // This is the same as `index.wrapping_sub(Group::WIDTH) % self.buckets()` because
        // the number of buckets is a power of two, and `self.bucket_mask = self.buckets() - 1`.
        let index_before = index.wrapping_sub(Group::WIDTH) & self.bucket_mask;
        // SAFETY:
        // - The caller must uphold the safety contract for `erase` method;
        // - `index_before` is guaranteed to be in range due to masking with `self.bucket_mask`
        let empty_before = Group::load(self.ctrl(index_before)).match_empty();
        let empty_after = Group::load(self.ctrl(index)).match_empty();

        // Inserting and searching in the map is performed by two key functions:
        //
        // - The `find_insert_slot` function that looks up the index of any `EMPTY` or `DELETED`
        //   slot in a group to be able to insert. If it doesn't find an `EMPTY` or `DELETED`
        //   slot immediately in the first group, it jumps to the next `Group` looking for it,
        //   and so on until it has gone through all the groups in the control bytes.
        //
        // - The `find_inner` function that looks for the index of the desired element by looking
        //   at all the `FULL` bytes in the group. If it did not find the element right away, and
        //   there is no `EMPTY` byte in the group, then this means that the `find_insert_slot`
        //   function may have found a suitable slot in the next group. Therefore, `find_inner`
        //   jumps further, and if it does not find the desired element and again there is no `EMPTY`
        //   byte, then it jumps further, and so on. The search stops only if `find_inner` function
        //   finds the desired element or hits an `EMPTY` slot/byte.
        //
        // Accordingly, this leads to two consequences:
        //
        // - The map must have `EMPTY` slots (bytes);
        //
        // - You can't just mark the byte to be erased as `EMPTY`, because otherwise the `find_inner`
        //   function may stumble upon an `EMPTY` byte before finding the desired element and stop
        //   searching.
        //
        // Thus it is necessary to check all bytes after and before the erased element. If we are in
        // a contiguous `Group` of `FULL` or `DELETED` bytes (the number of `FULL` or `DELETED` bytes
        // before and after is greater than or equal to `Group::WIDTH`), then we must mark our byte as
        // `DELETED` in order for the `find_inner` function to go further. On the other hand, if there
        // is at least one `EMPTY` slot in the `Group`, then the `find_inner` function will still stumble
        // upon an `EMPTY` byte, so we can safely mark our erased byte as `EMPTY` as well.
        //
        // Finally, since `index_before == (index.wrapping_sub(Group::WIDTH) & self.bucket_mask) == index`
        // and given all of the above, tables smaller than the group width (self.buckets() < Group::WIDTH)
        // cannot have `DELETED` bytes.
        //
        // Note that in this context `leading_zeros` refers to the bytes at the end of a group, while
        // `trailing_zeros` refers to the bytes at the beginning of a group.
        let ctrl = if empty_before.leading_zeros() + empty_after.trailing_zeros() >= Group::WIDTH {
            DELETED
        } else {
            self.growth_left += 1;
            EMPTY
        };
        // SAFETY: the caller must uphold the safety contract for `erase` method.
        self.set_ctrl(index, ctrl);
        self.items -= 1;
    }
}

impl<T, A: Allocator + Clone> TryClone for RawTable<T, A>
where
    T: TryClone,
{
    fn try_clone(&self) -> Result<Self, Error> {
        if self.table.is_empty_singleton() {
            Ok(Self::new_in(self.alloc.clone()))
        } else {
            unsafe {
                // Avoid `Result::ok_or_else` because it bloats LLVM IR.
                //
                // SAFETY: This is safe as we are taking the size of an already allocated table
                // and therefore сapacity overflow cannot occur, `self.table.buckets()` is power
                // of two and all allocator errors will be caught inside `RawTableInner::new_uninitialized`.
                let mut new_table =
                    Self::new_uninitialized(self.alloc.clone(), self.table.buckets())?;

                // Cloning elements may fail (the clone function may panic). But we don't
                // need to worry about uninitialized control bits, since:
                // 1. The number of items (elements) in the table is zero, which means that
                //    the control bits will not be readed by Drop function.
                // 2. The `clone_from_spec` method will first copy all control bits from
                //    `self` (thus initializing them). But this will not affect the `Drop`
                //    function, since the `clone_from_spec` function sets `items` only after
                //    successfully clonning all elements.
                new_table.clone_from_spec(self)?;
                Ok(new_table)
            }
        }
    }

    fn try_clone_from(&mut self, source: &Self) -> Result<(), Error> {
        if source.table.is_empty_singleton() {
            let mut old_inner = mem::replace(&mut self.table, RawTableInner::NEW);
            unsafe {
                // SAFETY:
                // 1. We call the function only once;
                // 2. We know for sure that `alloc` and `table_layout` matches the [`Allocator`]
                //    and [`TableLayout`] that were used to allocate this table.
                // 3. If any elements' drop function panics, then there will only be a memory leak,
                //    because we have replaced the inner table with a new one.
                old_inner.drop_inner_table::<T, _>(&self.alloc, Self::TABLE_LAYOUT);
            }
        } else {
            unsafe {
                // Make sure that if any panics occurs, we clear the table and
                // leave it in an empty state.
                let mut self_ = guard(self, |self_| {
                    self_.clear_no_drop();
                });

                // First, drop all our elements without clearing the control
                // bytes. If this panics then the scope guard will clear the
                // table, leaking any elements that were not dropped yet.
                //
                // This leak is unavoidable: we can't try dropping more elements
                // since this could lead to another panic and abort the process.
                //
                // SAFETY: If something gets wrong we clear our table right after
                // dropping the elements, so there is no double drop, since `items`
                // will be equal to zero.
                self_.table.drop_elements::<T>();

                // If necessary, resize our table to match the source.
                if self_.buckets() != source.buckets() {
                    let new_inner = RawTableInner::new_uninitialized(
                        &self_.alloc,
                        Self::TABLE_LAYOUT,
                        source.buckets(),
                    )?;
                    // Replace the old inner with new uninitialized one. It's ok, since if something gets
                    // wrong `ScopeGuard` will initialize all control bytes and leave empty table.
                    let mut old_inner = mem::replace(&mut self_.table, new_inner);
                    if !old_inner.is_empty_singleton() {
                        // SAFETY:
                        // 1. We have checked that our table is allocated.
                        // 2. We know for sure that `alloc` and `table_layout` matches
                        // the [`Allocator`] and [`TableLayout`] that were used to allocate this table.
                        old_inner.free_buckets(&self_.alloc, Self::TABLE_LAYOUT);
                    }
                }

                // Cloning elements may fail (the clone function may panic), but the `ScopeGuard`
                // inside the `clone_from_impl` function will take care of that, dropping all
                // cloned elements if necessary. Our `ScopeGuard` will clear the table.
                self_.clone_from_spec(source)?;

                // Disarm the scope guard if cloning was successful.
                ScopeGuard::into_inner(self_);
            }
        }

        Ok(())
    }
}

#[cfg(test)]
impl<T, A: Allocator + Clone> Clone for RawTable<T, A>
where
    T: TryClone,
{
    fn clone(&self) -> Self {
        self.try_clone().abort()
    }

    fn clone_from(&mut self, source: &Self) {
        self.try_clone_from(source).abort()
    }
}

/// Specialization of `clone_from` for `Copy` types
trait RawTableClone {
    unsafe fn clone_from_spec(&mut self, source: &Self) -> Result<(), Error>;
}
impl<T: TryClone, A: Allocator + Clone> RawTableClone for RawTable<T, A> {
    default_fn! {
        #[cfg_attr(feature = "inline-more", inline)]
        unsafe fn clone_from_spec(&mut self, source: &Self) -> Result<(), Error> {
            self.clone_from_impl(source)
        }
    }
}
#[cfg(rune_nightly)]
impl<T: TryCopy, A: Allocator + Clone> RawTableClone for RawTable<T, A> {
    #[cfg_attr(feature = "inline-more", inline)]
    unsafe fn clone_from_spec(&mut self, source: &Self) -> Result<(), Error> {
        source
            .table
            .ctrl(0)
            .copy_to_nonoverlapping(self.table.ctrl(0), self.table.num_ctrl_bytes());
        source
            .data_start()
            .as_ptr()
            .copy_to_nonoverlapping(self.data_start().as_ptr(), self.table.buckets());

        self.table.items = source.table.items;
        self.table.growth_left = source.table.growth_left;
        Ok(())
    }
}

impl<T: TryClone, A: Allocator + Clone> RawTable<T, A> {
    /// Common code for clone and clone_from. Assumes:
    /// - `self.buckets() == source.buckets()`.
    /// - Any existing elements have been dropped.
    /// - The control bytes are not initialized yet.
    #[cfg_attr(feature = "inline-more", inline)]
    unsafe fn clone_from_impl(&mut self, source: &Self) -> Result<(), Error> {
        // Copy the control bytes unchanged. We do this in a single pass
        source
            .table
            .ctrl(0)
            .copy_to_nonoverlapping(self.table.ctrl(0), self.table.num_ctrl_bytes());

        // The cloning of elements may panic, in which case we need
        // to make sure we drop only the elements that have been
        // cloned so far.
        let mut guard = guard((0, &mut *self), |(index, self_)| {
            if T::NEEDS_DROP {
                for i in 0..*index {
                    if self_.is_bucket_full(i) {
                        self_.bucket(i).drop();
                    }
                }
            }
        });

        for from in source.iter() {
            let index = source.bucket_index(&from);
            let to = guard.1.bucket(index);
            to.write(from.as_ref().try_clone()?);

            // Update the index in case we need to unwind.
            guard.0 = index + 1;
        }

        // Successfully cloned all items, no need to clean up.
        mem::forget(guard);

        self.table.items = source.table.items;
        self.table.growth_left = source.table.growth_left;
        Ok(())
    }

    /// Variant of `clone_from` to use when a hasher is available.
    pub fn clone_from_with_hasher<C: ?Sized, E>(
        &mut self,
        cx: &mut C,
        source: &Self,
        hasher: impl HasherFn<C, T, E>,
    ) -> Result<(), CustomError<E>> {
        // If we have enough capacity in the table, just clear it and insert
        // elements one by one. We don't do this if we have the same number of
        // buckets as the source since we can just copy the contents directly
        // in that case.
        if self.table.buckets() != source.table.buckets()
            && bucket_mask_to_capacity(self.table.bucket_mask) >= source.len()
        {
            self.clear();

            let mut guard_self = guard(&mut *self, |self_| {
                // Clear the partially copied table if a panic occurs, otherwise
                // items and growth_left will be out of sync with the contents
                // of the table.
                self_.clear();
            });

            unsafe {
                for item in source.iter() {
                    // This may panic.
                    let item = item.as_ref().try_clone()?;
                    let hash = hasher.hash(cx, &item).map_err(CustomError::Custom)?;

                    // We can use a simpler version of insert() here since:
                    // - there are no DELETED entries.
                    // - we know there is enough space in the table.
                    // - all elements are unique.
                    let (index, _) = guard_self.table.prepare_insert_slot(hash);
                    guard_self.bucket(index).write(item);
                }
            }

            // Successfully cloned all items, no need to clean up.
            mem::forget(guard_self);

            self.table.items = source.table.items;
            self.table.growth_left -= source.table.items;
        } else {
            self.try_clone_from(source)?;
        }

        Ok(())
    }
}

impl<T, A: Allocator + Default> Default for RawTable<T, A> {
    #[inline]
    fn default() -> Self {
        Self::new_in(Default::default())
    }
}

#[cfg(rune_nightly)]
unsafe impl<#[may_dangle] T, A: Allocator> Drop for RawTable<T, A> {
    #[cfg_attr(feature = "inline-more", inline)]
    fn drop(&mut self) {
        unsafe {
            // SAFETY:
            // 1. We call the function only once;
            // 2. We know for sure that `alloc` and `table_layout` matches the [`Allocator`]
            //    and [`TableLayout`] that were used to allocate this table.
            // 3. If the drop function of any elements fails, then only a memory leak will occur,
            //    and we don't care because we are inside the `Drop` function of the `RawTable`,
            //    so there won't be any table left in an inconsistent state.
            self.table
                .drop_inner_table::<T, _>(&self.alloc, Self::TABLE_LAYOUT);
        }
    }
}
#[cfg(not(rune_nightly))]
impl<T, A: Allocator> Drop for RawTable<T, A> {
    #[cfg_attr(feature = "inline-more", inline)]
    fn drop(&mut self) {
        unsafe {
            // SAFETY:
            // 1. We call the function only once;
            // 2. We know for sure that `alloc` and `table_layout` matches the [`Allocator`]
            //    and [`TableLayout`] that were used to allocate this table.
            // 3. If the drop function of any elements fails, then only a memory leak will occur,
            //    and we don't care because we are inside the `Drop` function of the `RawTable`,
            //    so there won't be any table left in an inconsistent state.
            self.table
                .drop_inner_table::<T, _>(&self.alloc, Self::TABLE_LAYOUT);
        }
    }
}

impl<T, A: Allocator> IntoIterator for RawTable<T, A> {
    type Item = T;
    type IntoIter = RawIntoIter<T, A>;

    #[cfg_attr(feature = "inline-more", inline)]
    fn into_iter(self) -> RawIntoIter<T, A> {
        unsafe {
            let iter = self.iter();
            self.into_iter_from(iter)
        }
    }
}

/// Iterator over a sub-range of a table. Unlike `RawIter` this iterator does
/// not track an item count.
pub(crate) struct RawIterRange<T> {
    // Mask of full buckets in the current group. Bits are cleared from this
    // mask as each element is processed.
    current_group: BitMaskIter,

    // Pointer to the buckets for the current group.
    data: Bucket<T>,

    // Pointer to the next group of control bytes,
    // Must be aligned to the group size.
    next_ctrl: *const u8,

    // Pointer one past the last control byte of this range.
    end: *const u8,
}

impl<T> RawIterRange<T> {
    /// Returns a `RawIterRange` covering a subset of a table.
    ///
    /// # Safety
    ///
    /// If any of the following conditions are violated, the result is
    /// [`undefined behavior`]:
    ///
    /// * `ctrl` must be [valid] for reads, i.e. table outlives the `RawIterRange`;
    ///
    /// * `ctrl` must be properly aligned to the group size (Group::WIDTH);
    ///
    /// * `ctrl` must point to the array of properly initialized control bytes;
    ///
    /// * `data` must be the [`Bucket`] at the `ctrl` index in the table;
    ///
    /// * the value of `len` must be less than or equal to the number of table buckets,
    ///   and the returned value of `ctrl.as_ptr().add(len).offset_from(ctrl.as_ptr())`
    ///   must be positive.
    ///
    /// * The `ctrl.add(len)` pointer must be either in bounds or one
    ///   byte past the end of the same [allocated table].
    ///
    /// * The `len` must be a power of two.
    ///
    /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
    #[cfg_attr(feature = "inline-more", inline)]
    unsafe fn new(ctrl: *const u8, data: Bucket<T>, len: usize) -> Self {
        debug_assert_ne!(len, 0);
        debug_assert_eq!(ctrl as usize % Group::WIDTH, 0);
        // SAFETY: The caller must uphold the safety rules for the [`RawIterRange::new`]
        let end = ctrl.add(len);

        // Load the first group and advance ctrl to point to the next group
        // SAFETY: The caller must uphold the safety rules for the [`RawIterRange::new`]
        let current_group = Group::load_aligned(ctrl).match_full();
        let next_ctrl = ctrl.add(Group::WIDTH);

        Self {
            current_group: current_group.into_iter(),
            data,
            next_ctrl,
            end,
        }
    }

    /// # Safety
    /// If DO_CHECK_PTR_RANGE is false, caller must ensure that we never try to iterate
    /// after yielding all elements.
    #[cfg_attr(feature = "inline-more", inline)]
    unsafe fn next_impl<const DO_CHECK_PTR_RANGE: bool>(&mut self) -> Option<Bucket<T>> {
        loop {
            if let Some(index) = self.current_group.next() {
                return Some(self.data.next_n(index));
            }

            if DO_CHECK_PTR_RANGE && self.next_ctrl >= self.end {
                return None;
            }

            // We might read past self.end up to the next group boundary,
            // but this is fine because it only occurs on tables smaller
            // than the group size where the trailing control bytes are all
            // EMPTY. On larger tables self.end is guaranteed to be aligned
            // to the group size (since tables are power-of-two sized).
            self.current_group = Group::load_aligned(self.next_ctrl).match_full().into_iter();
            self.data = self.data.next_n(Group::WIDTH);
            self.next_ctrl = self.next_ctrl.add(Group::WIDTH);
        }
    }
}

// We make raw iterators unconditionally Send and Sync, and let the PhantomData
// in the actual iterator implementations determine the real Send/Sync bounds.
unsafe impl<T> Send for RawIterRange<T> {}
unsafe impl<T> Sync for RawIterRange<T> {}

impl<T> Clone for RawIterRange<T> {
    #[cfg_attr(feature = "inline-more", inline)]
    fn clone(&self) -> Self {
        Self {
            data: self.data.clone(),
            next_ctrl: self.next_ctrl,
            current_group: self.current_group,
            end: self.end,
        }
    }
}

impl<T> Iterator for RawIterRange<T> {
    type Item = Bucket<T>;

    #[cfg_attr(feature = "inline-more", inline)]
    fn next(&mut self) -> Option<Bucket<T>> {
        unsafe {
            // SAFETY: We set checker flag to true.
            self.next_impl::<true>()
        }
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        // We don't have an item count, so just guess based on the range size.
        let remaining_buckets = if self.end > self.next_ctrl {
            unsafe { offset_from(self.end, self.next_ctrl) }
        } else {
            0
        };

        // Add a group width to include the group we are currently processing.
        (0, Some(Group::WIDTH + remaining_buckets))
    }
}

impl<T> FusedIterator for RawIterRange<T> {}

/// Iterator which returns a raw pointer to every full bucket in the table.
///
/// For maximum flexibility this iterator is not bound by a lifetime, but you
/// must observe several rules when using it:
/// - You must not free the hash table while iterating (including via growing/shrinking).
/// - It is fine to erase a bucket that has been yielded by the iterator.
/// - Erasing a bucket that has not yet been yielded by the iterator may still
///   result in the iterator yielding that bucket (unless `reflect_remove` is called).
/// - It is unspecified whether an element inserted after the iterator was
///   created will be yielded by that iterator (unless `reflect_insert` is called).
/// - The order in which the iterator yields bucket is unspecified and may
///   change in the future.
pub struct RawIter<T> {
    pub(crate) iter: RawIterRange<T>,
    items: usize,
}

impl<T> RawIter<T> {
    /// Refresh the iterator so that it reflects a removal from the given bucket.
    ///
    /// For the iterator to remain valid, this method must be called once
    /// for each removed bucket before `next` is called again.
    ///
    /// This method should be called _before_ the removal is made. It is not necessary to call this
    /// method if you are removing an item that this iterator yielded in the past.
    pub unsafe fn reflect_remove(&mut self, b: &Bucket<T>) {
        self.reflect_toggle_full(b, false);
    }

    /// Refresh the iterator so that it reflects an insertion into the given bucket.
    ///
    /// For the iterator to remain valid, this method must be called once
    /// for each insert before `next` is called again.
    ///
    /// This method does not guarantee that an insertion of a bucket with a greater
    /// index than the last one yielded will be reflected in the iterator.
    ///
    /// This method should be called _after_ the given insert is made.
    pub unsafe fn reflect_insert(&mut self, b: &Bucket<T>) {
        self.reflect_toggle_full(b, true);
    }

    /// Refresh the iterator so that it reflects a change to the state of the given bucket.
    unsafe fn reflect_toggle_full(&mut self, b: &Bucket<T>, is_insert: bool) {
        if b.as_ptr() > self.iter.data.as_ptr() {
            // The iterator has already passed the bucket's group.
            // So the toggle isn't relevant to this iterator.
            return;
        }

        if self.iter.next_ctrl < self.iter.end
            && b.as_ptr() <= self.iter.data.next_n(Group::WIDTH).as_ptr()
        {
            // The iterator has not yet reached the bucket's group.
            // We don't need to reload anything, but we do need to adjust the item count.

            if cfg!(debug_assertions) {
                // Double-check that the user isn't lying to us by checking the bucket state.
                // To do that, we need to find its control byte. We know that self.iter.data is
                // at self.iter.next_ctrl - Group::WIDTH, so we work from there:
                let offset = offset_from(self.iter.data.as_ptr(), b.as_ptr());
                let ctrl = self.iter.next_ctrl.sub(Group::WIDTH).add(offset);
                // This method should be called _before_ a removal, or _after_ an insert,
                // so in both cases the ctrl byte should indicate that the bucket is full.
                assert!(is_full(*ctrl));
            }

            if is_insert {
                self.items += 1;
            } else {
                self.items -= 1;
            }

            return;
        }

        // The iterator is at the bucket group that the toggled bucket is in.
        // We need to do two things:
        //
        //  - Determine if the iterator already yielded the toggled bucket.
        //    If it did, we're done.
        //  - Otherwise, update the iterator cached group so that it won't
        //    yield a to-be-removed bucket, or _will_ yield a to-be-added bucket.
        //    We'll also need to update the item count accordingly.
        if let Some(index) = self.iter.current_group.0.lowest_set_bit() {
            let next_bucket = self.iter.data.next_n(index);
            if b.as_ptr() > next_bucket.as_ptr() {
                // The toggled bucket is "before" the bucket the iterator would yield next. We
                // therefore don't need to do anything --- the iterator has already passed the
                // bucket in question.
                //
                // The item count must already be correct, since a removal or insert "prior" to
                // the iterator's position wouldn't affect the item count.
            } else {
                // The removed bucket is an upcoming bucket. We need to make sure it does _not_
                // get yielded, and also that it's no longer included in the item count.
                //
                // NOTE: We can't just reload the group here, both since that might reflect
                // inserts we've already passed, and because that might inadvertently unset the
                // bits for _other_ removals. If we do that, we'd have to also decrement the
                // item count for those other bits that we unset. But the presumably subsequent
                // call to reflect for those buckets might _also_ decrement the item count.
                // Instead, we _just_ flip the bit for the particular bucket the caller asked
                // us to reflect.
                let our_bit = offset_from(self.iter.data.as_ptr(), b.as_ptr());
                let was_full = self.iter.current_group.flip(our_bit);
                debug_assert_ne!(was_full, is_insert);

                if is_insert {
                    self.items += 1;
                } else {
                    self.items -= 1;
                }

                if cfg!(debug_assertions) {
                    if b.as_ptr() == next_bucket.as_ptr() {
                        // The removed bucket should no longer be next
                        debug_assert_ne!(self.iter.current_group.0.lowest_set_bit(), Some(index));
                    } else {
                        // We should not have changed what bucket comes next.
                        debug_assert_eq!(self.iter.current_group.0.lowest_set_bit(), Some(index));
                    }
                }
            }
        } else {
            // We must have already iterated past the removed item.
        }
    }

    unsafe fn drop_elements(&mut self) {
        if T::NEEDS_DROP && self.items != 0 {
            for item in self {
                item.drop();
            }
        }
    }
}

impl<T> Clone for RawIter<T> {
    #[cfg_attr(feature = "inline-more", inline)]
    fn clone(&self) -> Self {
        Self {
            iter: self.iter.clone(),
            items: self.items,
        }
    }
}

impl<T> Iterator for RawIter<T> {
    type Item = Bucket<T>;

    #[cfg_attr(feature = "inline-more", inline)]
    fn next(&mut self) -> Option<Bucket<T>> {
        // Inner iterator iterates over buckets
        // so it can do unnecessary work if we already yielded all items.
        if self.items == 0 {
            return None;
        }

        let nxt = unsafe {
            // SAFETY: We check number of items to yield using `items` field.
            self.iter.next_impl::<false>()
        };

        debug_assert!(nxt.is_some());
        self.items -= 1;

        nxt
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.items, Some(self.items))
    }
}

impl<T> ExactSizeIterator for RawIter<T> {}
impl<T> FusedIterator for RawIter<T> {}

/// Iterator which returns an index of every full bucket in the table.
///
/// For maximum flexibility this iterator is not bound by a lifetime, but you
/// must observe several rules when using it:
/// - You must not free the hash table while iterating (including via growing/shrinking).
/// - It is fine to erase a bucket that has been yielded by the iterator.
/// - Erasing a bucket that has not yet been yielded by the iterator may still
///   result in the iterator yielding index of that bucket.
/// - It is unspecified whether an element inserted after the iterator was
///   created will be yielded by that iterator.
/// - The order in which the iterator yields indices of the buckets is unspecified
///   and may change in the future.
pub(crate) struct FullBucketsIndices {
    // Mask of full buckets in the current group. Bits are cleared from this
    // mask as each element is processed.
    current_group: BitMaskIter,

    // Initial value of the bytes' indices of the current group (relative
    // to the start of the control bytes).
    group_first_index: usize,

    // Pointer to the current group of control bytes,
    // Must be aligned to the group size (Group::WIDTH).
    ctrl: NonNull<u8>,

    // Number of elements in the table.
    items: usize,
}

impl FullBucketsIndices {
    /// Advances the iterator and returns the next value.
    ///
    /// # Safety
    ///
    /// If any of the following conditions are violated, the result is
    /// [`Undefined Behavior`]:
    ///
    /// * The [`RawTableInner`] / [`RawTable`] must be alive and not moved,
    ///   i.e. table outlives the `FullBucketsIndices`;
    ///
    /// * It never tries to iterate after getting all elements.
    ///
    /// [`Undefined Behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
    #[inline(always)]
    unsafe fn next_impl(&mut self) -> Option<usize> {
        loop {
            if let Some(index) = self.current_group.next() {
                // The returned `self.group_first_index + index` will always
                // be in the range `0..self.buckets()`. See explanation below.
                return Some(self.group_first_index + index);
            }

            // SAFETY: The caller of this function ensures that:
            //
            // 1. It never tries to iterate after getting all the elements;
            // 2. The table is alive and did not moved;
            // 3. The first `self.ctrl` pointed to the start of the array of control bytes.
            //
            // Taking the above into account, we always stay within the bounds, because:
            //
            // 1. For tables smaller than the group width (self.buckets() <= Group::WIDTH),
            //    we will never end up in the given branch, since we should have already
            //    yielded all the elements of the table.
            //
            // 2. For tables larger than the group width. The the number of buckets is a
            //    power of two (2 ^ n), Group::WIDTH is also power of two (2 ^ k). Sinse
            //    `(2 ^ n) > (2 ^ k)`, than `(2 ^ n) % (2 ^ k) = 0`. As we start from the
            //    the start of the array of control bytes, and never try to iterate after
            //    getting all the elements, the last `self.ctrl` will be equal to
            //    the `self.buckets() - Group::WIDTH`, so `self.current_group.next()`
            //    will always contains indices within the range `0..Group::WIDTH`,
            //    and subsequent `self.group_first_index + index` will always return a
            //    number less than `self.buckets()`.
            self.ctrl = NonNull::new_unchecked(self.ctrl.as_ptr().add(Group::WIDTH));

            // SAFETY: See explanation above.
            self.current_group = Group::load_aligned(self.ctrl.as_ptr())
                .match_full()
                .into_iter();
            self.group_first_index += Group::WIDTH;
        }
    }
}

impl Iterator for FullBucketsIndices {
    type Item = usize;

    /// Advances the iterator and returns the next value. It is up to
    /// the caller to ensure that the `RawTable` outlives the `FullBucketsIndices`,
    /// because we cannot make the `next` method unsafe.
    #[inline(always)]
    fn next(&mut self) -> Option<usize> {
        // Return if we already yielded all items.
        if self.items == 0 {
            return None;
        }

        let nxt = unsafe {
            // SAFETY:
            // 1. We check number of items to yield using `items` field.
            // 2. The caller ensures that the table is alive and has not moved.
            self.next_impl()
        };

        debug_assert!(nxt.is_some());
        self.items -= 1;

        nxt
    }

    #[inline(always)]
    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.items, Some(self.items))
    }
}

impl ExactSizeIterator for FullBucketsIndices {}
impl FusedIterator for FullBucketsIndices {}

/// Iterator which consumes a table and returns elements.
pub struct RawIntoIter<T, A: Allocator = Global> {
    iter: RawIter<T>,
    allocation: Option<(NonNull<u8>, Layout, A)>,
    marker: PhantomData<T>,
}

impl<T, A: Allocator> RawIntoIter<T, A> {
    #[cfg_attr(feature = "inline-more", inline)]
    pub fn iter(&self) -> RawIter<T> {
        self.iter.clone()
    }
}

unsafe impl<T, A: Allocator> Send for RawIntoIter<T, A>
where
    T: Send,
    A: Send,
{
}
unsafe impl<T, A: Allocator> Sync for RawIntoIter<T, A>
where
    T: Sync,
    A: Sync,
{
}

#[cfg(rune_nightly)]
unsafe impl<#[may_dangle] T, A: Allocator> Drop for RawIntoIter<T, A> {
    #[cfg_attr(feature = "inline-more", inline)]
    fn drop(&mut self) {
        unsafe {
            // Drop all remaining elements
            self.iter.drop_elements();

            // Free the table
            if let Some((ptr, layout, ref alloc)) = self.allocation {
                alloc.deallocate(ptr, layout);
            }
        }
    }
}
#[cfg(not(rune_nightly))]
impl<T, A: Allocator> Drop for RawIntoIter<T, A> {
    #[cfg_attr(feature = "inline-more", inline)]
    fn drop(&mut self) {
        unsafe {
            // Drop all remaining elements
            self.iter.drop_elements();

            // Free the table
            if let Some((ptr, layout, ref alloc)) = self.allocation {
                alloc.deallocate(ptr, layout);
            }
        }
    }
}

impl<T, A: Allocator> Iterator for RawIntoIter<T, A> {
    type Item = T;

    #[cfg_attr(feature = "inline-more", inline)]
    fn next(&mut self) -> Option<T> {
        unsafe { Some(self.iter.next()?.read()) }
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.iter.size_hint()
    }
}

impl<T, A: Allocator> ExactSizeIterator for RawIntoIter<T, A> {}
impl<T, A: Allocator> FusedIterator for RawIntoIter<T, A> {}

/// Iterator which consumes elements without freeing the table storage.
pub struct RawDrain<'a, T, A: Allocator = Global> {
    iter: RawIter<T>,

    // The table is moved into the iterator for the duration of the drain. This
    // ensures that an empty table is left if the drain iterator is leaked
    // without dropping.
    table: RawTableInner,
    orig_table: NonNull<RawTableInner>,

    // We don't use a &'a mut RawTable<T> because we want RawDrain to be
    // covariant over T.
    marker: PhantomData<&'a RawTable<T, A>>,
}

impl<T, A: Allocator> RawDrain<'_, T, A> {
    #[cfg_attr(feature = "inline-more", inline)]
    pub fn iter(&self) -> RawIter<T> {
        self.iter.clone()
    }
}

unsafe impl<T, A: Allocator> Send for RawDrain<'_, T, A>
where
    T: Send,
    A: Send,
{
}
unsafe impl<T, A: Allocator> Sync for RawDrain<'_, T, A>
where
    T: Sync,
    A: Sync,
{
}

impl<T, A: Allocator> Drop for RawDrain<'_, T, A> {
    #[cfg_attr(feature = "inline-more", inline)]
    fn drop(&mut self) {
        unsafe {
            // Drop all remaining elements. Note that this may panic.
            self.iter.drop_elements();

            // Reset the contents of the table now that all elements have been
            // dropped.
            self.table.clear_no_drop();

            // Move the now empty table back to its original location.
            self.orig_table
                .as_ptr()
                .copy_from_nonoverlapping(&self.table, 1);
        }
    }
}

impl<T, A: Allocator> Iterator for RawDrain<'_, T, A> {
    type Item = T;

    #[cfg_attr(feature = "inline-more", inline)]
    fn next(&mut self) -> Option<T> {
        unsafe {
            let item = self.iter.next()?;
            Some(item.read())
        }
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.iter.size_hint()
    }
}

impl<T, A: Allocator> ExactSizeIterator for RawDrain<'_, T, A> {}
impl<T, A: Allocator> FusedIterator for RawDrain<'_, T, A> {}

/// Iterator over occupied buckets that could match a given hash.
///
/// `RawTable` only stores 7 bits of the hash value, so this iterator may return
/// items that have a hash value different than the one provided. You should
/// always validate the returned values before using them.
///
/// For maximum flexibility this iterator is not bound by a lifetime, but you
/// must observe several rules when using it:
/// - You must not free the hash table while iterating (including via growing/shrinking).
/// - It is fine to erase a bucket that has been yielded by the iterator.
/// - Erasing a bucket that has not yet been yielded by the iterator may still
///   result in the iterator yielding that bucket.
/// - It is unspecified whether an element inserted after the iterator was
///   created will be yielded by that iterator.
/// - The order in which the iterator yields buckets is unspecified and may
///   change in the future.
pub struct RawIterHash<T> {
    inner: RawIterHashInner,
    _marker: PhantomData<T>,
}

struct RawIterHashInner {
    // See `RawTableInner`'s corresponding fields for details.
    // We can't store a `*const RawTableInner` as it would get
    // invalidated by the user calling `&mut` methods on `RawTable`.
    bucket_mask: usize,
    ctrl: NonNull<u8>,

    // The top 7 bits of the hash.
    h2_hash: u8,

    // The sequence of groups to probe in the search.
    probe_seq: ProbeSeq,

    group: Group,

    // The elements within the group with a matching h2-hash.
    bitmask: BitMaskIter,
}

impl<T> RawIterHash<T> {
    #[cfg_attr(feature = "inline-more", inline)]
    unsafe fn new<A: Allocator>(table: &RawTable<T, A>, hash: u64) -> Self {
        RawIterHash {
            inner: RawIterHashInner::new(&table.table, hash),
            _marker: PhantomData,
        }
    }
}
impl RawIterHashInner {
    #[cfg_attr(feature = "inline-more", inline)]
    unsafe fn new(table: &RawTableInner, hash: u64) -> Self {
        let h2_hash = h2(hash);
        let probe_seq = table.probe_seq(hash);
        let group = Group::load(table.ctrl(probe_seq.pos));
        let bitmask = group.match_byte(h2_hash).into_iter();

        RawIterHashInner {
            bucket_mask: table.bucket_mask,
            ctrl: table.ctrl,
            h2_hash,
            probe_seq,
            group,
            bitmask,
        }
    }
}

impl<T> Iterator for RawIterHash<T> {
    type Item = Bucket<T>;

    fn next(&mut self) -> Option<Bucket<T>> {
        unsafe {
            match self.inner.next() {
                Some(index) => {
                    // Can't use `RawTable::bucket` here as we don't have
                    // an actual `RawTable` reference to use.
                    debug_assert!(index <= self.inner.bucket_mask);
                    let bucket = Bucket::from_base_index(self.inner.ctrl.cast(), index);
                    Some(bucket)
                }
                None => None,
            }
        }
    }
}

impl Iterator for RawIterHashInner {
    type Item = usize;

    fn next(&mut self) -> Option<Self::Item> {
        unsafe {
            loop {
                if let Some(bit) = self.bitmask.next() {
                    let index = (self.probe_seq.pos + bit) & self.bucket_mask;
                    return Some(index);
                }
                if likely(self.group.match_empty().any_bit_set()) {
                    return None;
                }
                self.probe_seq.move_next(self.bucket_mask);

                // Can't use `RawTableInner::ctrl` here as we don't have
                // an actual `RawTableInner` reference to use.
                let index = self.probe_seq.pos;
                debug_assert!(index < self.bucket_mask + 1 + Group::WIDTH);
                let group_ctrl = self.ctrl.as_ptr().add(index);

                self.group = Group::load(group_ctrl);
                self.bitmask = self.group.match_byte(self.h2_hash).into_iter();
            }
        }
    }
}

#[cfg(test)]
mod test_map {
    use super::*;

    use crate::alloc::into_ok;
    use core::convert::Infallible;

    fn rehash_in_place<T>(
        table: &mut RawTable<T>,
        hasher: impl Fn(&mut (), &T) -> Result<u64, Infallible>,
    ) {
        unsafe {
            into_ok(table.table.rehash_in_place(
                &mut (),
                &move |cx, table, index| hasher(cx, table.bucket::<T>(index).as_ref()),
                mem::size_of::<T>(),
                if mem::needs_drop::<T>() {
                    Some(mem::transmute::<unsafe fn(*mut T), fn(*mut u8)>(
                        ptr::drop_in_place::<T> as unsafe fn(*mut T),
                    ))
                } else {
                    None
                },
            ));
        }
    }

    #[test]
    fn rehash() {
        let mut table = RawTable::new();
        let hasher = |_: &mut (), i: &u64| Ok(*i);
        for i in 0..100 {
            table.insert(&mut (), i, i, hasher).abort();
        }

        for i in 0..100 {
            unsafe {
                assert_eq!(
                    into_ok(table.find(&mut (), i, |_: &mut (), x: &u64| Ok(*x == i)))
                        .map(|b| b.read()),
                    Some(i)
                );
            }
            assert!(
                into_ok(table.find(&mut (), i + 100, |_: &mut (), x: &u64| Ok(*x == i + 100)))
                    .is_none()
            );
        }

        rehash_in_place(&mut table, hasher);

        for i in 0..100 {
            unsafe {
                assert_eq!(
                    into_ok(table.find(&mut (), i, |_: &mut (), x: &u64| Ok(*x == i)))
                        .map(|b| b.read()),
                    Some(i)
                );
            }
            assert!(
                into_ok(table.find(&mut (), i + 100, |_: &mut (), x: &u64| Ok(*x == i + 100)))
                    .is_none()
            );
        }
    }

    /// CHECKING THAT WE ARE NOT TRYING TO READ THE MEMORY OF
    /// AN UNINITIALIZED TABLE DURING THE DROP
    #[test]
    fn test_drop_uninitialized() {
        use ::rust_alloc::vec::Vec;

        let table = unsafe {
            // SAFETY: The `buckets` is power of two and we're not
            // trying to actually use the returned RawTable.
            RawTable::<(u64, Vec<i32>)>::new_uninitialized(Global, 8).unwrap()
        };
        drop(table);
    }

    /// CHECKING THAT WE DON'T TRY TO DROP DATA IF THE `ITEMS`
    /// ARE ZERO, EVEN IF WE HAVE `FULL` CONTROL BYTES.
    #[test]
    fn test_drop_zero_items() {
        use ::rust_alloc::vec::Vec;
        unsafe {
            // SAFETY: The `buckets` is power of two and we're not
            // trying to actually use the returned RawTable.
            let table = RawTable::<(u64, Vec<i32>)>::new_uninitialized(Global, 8).unwrap();

            // WE SIMULATE, AS IT WERE, A FULL TABLE.

            // SAFETY: We checked that the table is allocated and therefore the table already has
            // `self.bucket_mask + 1 + Group::WIDTH` number of control bytes (see TableLayout::calculate_layout_for)
            // so writing `table.table.num_ctrl_bytes() == bucket_mask + 1 + Group::WIDTH` bytes is safe.
            table
                .table
                .ctrl(0)
                .write_bytes(EMPTY, table.table.num_ctrl_bytes());

            // SAFETY: table.capacity() is guaranteed to be smaller than table.buckets()
            table.table.ctrl(0).write_bytes(0, table.capacity());

            // Fix up the trailing control bytes. See the comments in set_ctrl
            // for the handling of tables smaller than the group width.
            if table.buckets() < Group::WIDTH {
                // SAFETY: We have `self.bucket_mask + 1 + Group::WIDTH` number of control bytes,
                // so copying `self.buckets() == self.bucket_mask + 1` bytes with offset equal to
                // `Group::WIDTH` is safe
                table
                    .table
                    .ctrl(0)
                    .copy_to(table.table.ctrl(Group::WIDTH), table.table.buckets());
            } else {
                // SAFETY: We have `self.bucket_mask + 1 + Group::WIDTH` number of
                // control bytes,so copying `Group::WIDTH` bytes with offset equal
                // to `self.buckets() == self.bucket_mask + 1` is safe
                table
                    .table
                    .ctrl(0)
                    .copy_to(table.table.ctrl(table.table.buckets()), Group::WIDTH);
            }
            drop(table);
        }
    }

    /// CHECKING THAT WE DON'T TRY TO DROP DATA IF THE `ITEMS`
    /// ARE ZERO, EVEN IF WE HAVE `FULL` CONTROL BYTES.
    #[test]
    fn test_catch_panic_clone_from() {
        use crate::alloc::{AllocError, Allocator};
        use ::rust_alloc::sync::Arc;
        use ::rust_alloc::vec::Vec;
        use core::sync::atomic::{AtomicI8, Ordering};
        use std::thread;

        struct MyAllocInner {
            drop_count: Arc<AtomicI8>,
        }

        #[derive(Clone)]
        struct MyAlloc {
            _inner: Arc<MyAllocInner>,
        }

        impl Drop for MyAllocInner {
            fn drop(&mut self) {
                std::println!("MyAlloc freed.");
                self.drop_count.fetch_sub(1, Ordering::SeqCst);
            }
        }

        unsafe impl Allocator for MyAlloc {
            fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
                let g = Global;
                g.allocate(layout)
            }

            unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout) {
                let g = Global;
                g.deallocate(ptr, layout)
            }
        }

        const DISARMED: bool = false;
        const ARMED: bool = true;

        struct CheckedCloneDrop {
            panic_in_clone: bool,
            dropped: bool,
            need_drop: Vec<u64>,
        }

        impl TryClone for CheckedCloneDrop {
            fn try_clone(&self) -> Result<Self, Error> {
                if self.panic_in_clone {
                    panic!("panic in clone")
                }
                Ok(Self {
                    panic_in_clone: self.panic_in_clone,
                    dropped: self.dropped,
                    need_drop: self.need_drop.clone(),
                })
            }
        }

        impl Drop for CheckedCloneDrop {
            fn drop(&mut self) {
                if self.dropped {
                    panic!("double drop");
                }
                self.dropped = true;
            }
        }

        let dropped: Arc<AtomicI8> = Arc::new(AtomicI8::new(2));

        let mut table = RawTable::new_in(MyAlloc {
            _inner: Arc::new(MyAllocInner {
                drop_count: dropped.clone(),
            }),
        });

        for (idx, panic_in_clone) in core::iter::repeat(DISARMED).take(7).enumerate() {
            let idx = idx as u64;
            table
                .insert(
                    &mut (),
                    idx,
                    (
                        idx,
                        CheckedCloneDrop {
                            panic_in_clone,
                            dropped: false,
                            need_drop: ::rust_alloc::vec![idx],
                        },
                    ),
                    |_: &mut (), (k, _): &(u64, _)| Ok::<_, Infallible>(*k),
                )
                .abort();
        }

        assert_eq!(table.len(), 7);

        thread::scope(|s| {
            let result = s.spawn(|| {
                let armed_flags = [
                    DISARMED, DISARMED, ARMED, DISARMED, DISARMED, DISARMED, DISARMED,
                ];
                let mut scope_table = RawTable::new_in(MyAlloc {
                    _inner: Arc::new(MyAllocInner {
                        drop_count: dropped.clone(),
                    }),
                });
                for (idx, &panic_in_clone) in armed_flags.iter().enumerate() {
                    let idx = idx as u64;
                    scope_table
                        .insert(
                            &mut (),
                            idx,
                            (
                                idx,
                                CheckedCloneDrop {
                                    panic_in_clone,
                                    dropped: false,
                                    need_drop: ::rust_alloc::vec![idx + 100],
                                },
                            ),
                            |_: &mut (), (k, _): &(u64, _)| Ok::<_, Infallible>(*k),
                        )
                        .abort();
                }
                table.clone_from(&scope_table);
            });
            assert!(result.join().is_err());
        });

        // Let's check that all iterators work fine and do not return elements
        // (especially `RawIterRange`, which does not depend on the number of
        // elements in the table, but looks directly at the control bytes)
        //
        // SAFETY: We know for sure that `RawTable` will outlive
        // the returned `RawIter / RawIterRange` iterator.
        assert_eq!(table.len(), 0);
        assert_eq!(unsafe { table.iter().count() }, 0);
        assert_eq!(unsafe { table.iter().iter.count() }, 0);

        for idx in 0..table.buckets() {
            let idx = idx as u64;
            assert!(
                into_ok(table.find(&mut (), idx, |_: &mut (), (k, _): &(u64, _)| Ok(*k == idx)))
                    .is_none(),
                "Index: {idx}"
            );
        }

        // All allocator clones should already be dropped.
        assert_eq!(dropped.load(Ordering::SeqCst), 1);
    }
}