ropey/tree/
node_children.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
use std::fmt;
use std::iter::{Iterator, Zip};
use std::slice;
use std::sync::Arc;

use crate::crlf;
use crate::tree::{self, Node, TextInfo, MAX_BYTES};

const MAX_LEN: usize = tree::MAX_CHILDREN;

/// A fixed-capacity vec of child Arc-pointers and child metadata.
///
/// The unsafe guts of this are implemented in NodeChildrenInternal
/// lower down in this file.
#[derive(Clone)]
#[repr(C)]
pub(crate) struct NodeChildren(inner::NodeChildrenInternal);

impl NodeChildren {
    /// Creates a new empty array.
    pub fn new() -> Self {
        NodeChildren(inner::NodeChildrenInternal::new())
    }

    /// Current length of the array.
    pub fn len(&self) -> usize {
        self.0.len() as usize
    }

    /// Returns whether the array is full or not.
    pub fn is_full(&self) -> bool {
        self.len() == MAX_LEN
    }

    /// Access to the nodes array.
    pub fn nodes(&self) -> &[Arc<Node>] {
        self.0.nodes()
    }

    /// Mutable access to the nodes array.
    pub fn nodes_mut(&mut self) -> &mut [Arc<Node>] {
        self.0.nodes_mut()
    }

    /// Access to the info array.
    pub fn info(&self) -> &[TextInfo] {
        self.0.info()
    }

    /// Mutable access to the info array.
    pub fn info_mut(&mut self) -> &mut [TextInfo] {
        self.0.info_mut()
    }

    /// Mutable access to both the info and nodes arrays simultaneously.
    pub fn data_mut(&mut self) -> (&mut [TextInfo], &mut [Arc<Node>]) {
        self.0.data_mut()
    }

    /// Updates the text info of the child at `idx`.
    pub fn update_child_info(&mut self, idx: usize) {
        let (info, nodes) = self.0.data_mut();
        info[idx] = nodes[idx].text_info();
    }

    /// Pushes an item into the end of the array.
    ///
    /// Increases length by one.  Panics if already full.
    pub fn push(&mut self, item: (TextInfo, Arc<Node>)) {
        self.0.push(item)
    }

    /// Pushes an element onto the end of the array, and then splits it in half,
    /// returning the right half.
    ///
    /// This works even when the array is full.
    pub fn push_split(&mut self, new_child: (TextInfo, Arc<Node>)) -> Self {
        let r_count = (self.len() + 1) / 2;
        let l_count = (self.len() + 1) - r_count;

        let mut right = self.split_off(l_count);
        right.push(new_child);
        right
    }

    /// Attempts to merge two nodes, and if it's too much data to merge
    /// equi-distributes it between the two.
    ///
    /// Returns:
    ///
    /// - True: merge was successful.
    /// - False: merge failed, equidistributed instead.
    pub fn merge_distribute(&mut self, idx1: usize, idx2: usize) -> bool {
        assert!(idx1 < idx2);
        assert!(idx2 < self.len());
        let remove_right = {
            let ((_, node1), (_, node2)) = self.get_two_mut(idx1, idx2);
            let node1 = Arc::make_mut(node1);
            let node2 = Arc::make_mut(node2);
            match *node1 {
                Node::Leaf(ref mut text1) => {
                    if let Node::Leaf(ref mut text2) = *node2 {
                        if (text1.len() + text2.len()) <= tree::MAX_BYTES {
                            text1.push_str(text2);
                            true
                        } else {
                            let right = text1.push_str_split(text2);
                            *text2 = right;
                            false
                        }
                    } else {
                        panic!("Siblings have different node types");
                    }
                }

                Node::Internal(ref mut children1) => {
                    if let Node::Internal(ref mut children2) = *node2 {
                        if (children1.len() + children2.len()) <= MAX_LEN {
                            for _ in 0..children2.len() {
                                children1.push(children2.remove(0));
                            }
                            true
                        } else {
                            children1.distribute_with(children2);
                            false
                        }
                    } else {
                        panic!("Siblings have different node types");
                    }
                }
            }
        };

        if remove_right {
            self.remove(idx2);
            self.update_child_info(idx1);
            return true;
        } else {
            self.update_child_info(idx1);
            self.update_child_info(idx2);
            return false;
        }
    }

    /// Equi-distributes the children between the two child arrays,
    /// preserving ordering.
    pub fn distribute_with(&mut self, other: &mut Self) {
        let r_target_len = (self.len() + other.len()) / 2;
        while other.len() < r_target_len {
            other.insert(0, self.pop());
        }
        while other.len() > r_target_len {
            self.push(other.remove(0));
        }
    }

    /// If the children are leaf nodes, compacts them to take up the fewest
    /// nodes.
    pub fn compact_leaves(&mut self) {
        if !self.nodes()[0].is_leaf() || self.len() < 2 {
            return;
        }

        let mut i = 1;
        while i < self.len() {
            if (self.nodes()[i - 1].leaf_text().len() + self.nodes()[i].leaf_text().len())
                <= MAX_BYTES
            {
                // Scope to contain borrows
                {
                    let ((_, node_l), (_, node_r)) = self.get_two_mut(i - 1, i);
                    let text_l = Arc::make_mut(node_l).leaf_text_mut();
                    let text_r = node_r.leaf_text();
                    text_l.push_str(text_r);
                }
                self.remove(i);
            } else if self.nodes()[i - 1].leaf_text().len() < MAX_BYTES {
                // Scope to contain borrows
                {
                    let ((_, node_l), (_, node_r)) = self.get_two_mut(i - 1, i);
                    let text_l = Arc::make_mut(node_l).leaf_text_mut();
                    let text_r = Arc::make_mut(node_r).leaf_text_mut();
                    let split_idx_r = crlf::prev_break(MAX_BYTES - text_l.len(), text_r.as_bytes());
                    text_l.push_str(&text_r[..split_idx_r]);
                    text_r.truncate_front(split_idx_r);
                }
                i += 1;
            } else {
                i += 1;
            }
        }

        for i in 0..self.len() {
            self.update_child_info(i);
        }
    }

    /// Pops an item off the end of the array and returns it.
    ///
    /// Decreases length by one.  Panics if already empty.
    pub fn pop(&mut self) -> (TextInfo, Arc<Node>) {
        self.0.pop()
    }

    /// Inserts an item into the the array at the given index.
    ///
    /// Increases length by one.  Panics if already full.  Preserves ordering
    /// of the other items.
    pub fn insert(&mut self, idx: usize, item: (TextInfo, Arc<Node>)) {
        self.0.insert(idx, item)
    }

    /// Inserts an element into a the array, and then splits it in half, returning
    /// the right half.
    ///
    /// This works even when the array is full.
    pub fn insert_split(&mut self, idx: usize, item: (TextInfo, Arc<Node>)) -> Self {
        assert!(self.len() > 0);
        assert!(idx <= self.len());
        let extra = if idx < self.len() {
            let extra = self.pop();
            self.insert(idx, item);
            extra
        } else {
            item
        };

        self.push_split(extra)
    }

    /// Removes the item at the given index from the the array.
    ///
    /// Decreases length by one.  Preserves ordering of the other items.
    pub fn remove(&mut self, idx: usize) -> (TextInfo, Arc<Node>) {
        self.0.remove(idx)
    }

    /// Splits the array in two at `idx`, returning the right part of the split.
    ///
    /// TODO: implement this more efficiently.
    pub fn split_off(&mut self, idx: usize) -> Self {
        assert!(idx <= self.len());

        let mut other = NodeChildren::new();
        let count = self.len() - idx;
        for _ in 0..count {
            other.push(self.remove(idx));
        }

        other
    }

    /// Fetches two children simultaneously, returning mutable references
    /// to their info and nodes.
    ///
    /// `idx1` must be less than `idx2`.
    pub fn get_two_mut(
        &mut self,
        idx1: usize,
        idx2: usize,
    ) -> (
        (&mut TextInfo, &mut Arc<Node>),
        (&mut TextInfo, &mut Arc<Node>),
    ) {
        assert!(idx1 < idx2);
        assert!(idx2 < self.len());

        let split_idx = idx1 + 1;
        let (info, nodes) = self.data_mut();
        let (info1, info2) = info.split_at_mut(split_idx);
        let (nodes1, nodes2) = nodes.split_at_mut(split_idx);

        (
            (&mut info1[idx1], &mut nodes1[idx1]),
            (&mut info2[idx2 - split_idx], &mut nodes2[idx2 - split_idx]),
        )
    }

    /// Creates an iterator over the array's items.
    pub fn iter(&self) -> Zip<slice::Iter<TextInfo>, slice::Iter<Arc<Node>>> {
        Iterator::zip(self.info().iter(), self.nodes().iter())
    }

    #[allow(clippy::needless_range_loop)]
    pub fn combined_info(&self) -> TextInfo {
        let info = self.info();
        let mut acc = TextInfo::new();

        // Doing this with an explicit loop is notably faster than
        // using an iterator in this case.
        for i in 0..info.len() {
            acc += info[i];
        }

        acc
    }

    /// Returns the child index and left-side-accumulated text info of the
    /// first child that matches the given predicate.
    ///
    /// If no child matches the predicate, the last child is returned.
    #[inline(always)]
    pub fn search_by<F>(&self, pred: F) -> (usize, TextInfo)
    where
        // (left-accumulated start info, left-accumulated end info)
        F: Fn(TextInfo, TextInfo) -> bool,
    {
        debug_assert!(self.len() > 0);

        let mut accum = TextInfo::new();
        let mut idx = 0;
        for info in self.info()[0..(self.len() - 1)].iter() {
            let next_accum = accum + *info;
            if pred(accum, next_accum) {
                break;
            }
            accum = next_accum;
            idx += 1;
        }

        (idx, accum)
    }

    /// Returns the child index and left-side-accumulated text info of the
    /// child that contains the given byte.
    ///
    /// One-past-the end is valid, and will return the last child.
    pub fn search_byte_idx(&self, byte_idx: usize) -> (usize, TextInfo) {
        let (idx, accum) = self.search_by(|_, end| byte_idx < end.bytes as usize);

        debug_assert!(
            byte_idx <= (accum.bytes + self.info()[idx].bytes) as usize,
            "Index out of bounds."
        );

        (idx, accum)
    }

    /// Returns the child index and left-side-accumulated text info of the
    /// child that contains the given char.
    ///
    /// One-past-the end is valid, and will return the last child.
    pub fn search_char_idx(&self, char_idx: usize) -> (usize, TextInfo) {
        let (idx, accum) = self.search_by(|_, end| char_idx < end.chars as usize);

        debug_assert!(
            char_idx <= (accum.chars + self.info()[idx].chars) as usize,
            "Index out of bounds."
        );

        (idx, accum)
    }

    /// Returns the child index and left-side-accumulated text info of the
    /// child that contains the given utf16 code unit offset.
    ///
    /// One-past-the end is valid, and will return the last child.
    pub fn search_utf16_code_unit_idx(&self, utf16_idx: usize) -> (usize, TextInfo) {
        let (idx, accum) =
            self.search_by(|_, end| utf16_idx < (end.chars + end.utf16_surrogates) as usize);

        debug_assert!(
            utf16_idx
                <= (accum.chars
                    + accum.utf16_surrogates
                    + self.info()[idx].chars
                    + self.info()[idx].utf16_surrogates) as usize,
            "Index out of bounds."
        );

        (idx, accum)
    }

    /// Same as `search_char_idx()` above, except that it only calulates the
    /// left-side-accumulated _char_ index rather than the full text info.
    ///
    /// Return is (child_index, left_acc_char_index)
    ///
    /// One-past-the end is valid, and will return the last child.
    #[inline(always)]
    pub fn search_char_idx_only(&self, char_idx: usize) -> (usize, usize) {
        debug_assert!(self.len() > 0);

        let mut accum_char_idx = 0;
        let mut idx = 0;
        for info in self.info()[0..(self.len() - 1)].iter() {
            let next_accum = accum_char_idx + info.chars as usize;
            if char_idx < next_accum {
                break;
            }
            accum_char_idx = next_accum;
            idx += 1;
        }

        debug_assert!(
            char_idx <= (accum_char_idx + self.info()[idx].chars as usize) as usize,
            "Index out of bounds."
        );

        (idx, accum_char_idx)
    }

    /// Returns the child index and left-side-accumulated text info of the
    /// child that contains the given line break.
    ///
    /// Beginning of the rope is considered index 0, although is not
    /// considered a line break for the returned left-side-accumulated
    /// text info.
    ///
    /// One-past-the end is valid, and will return the last child.
    pub fn search_line_break_idx(&self, line_break_idx: usize) -> (usize, TextInfo) {
        let (idx, accum) = self.search_by(|_, end| line_break_idx <= end.line_breaks as usize);

        debug_assert!(
            line_break_idx <= (accum.line_breaks + self.info()[idx].line_breaks + 1) as usize,
            "Index out of bounds."
        );

        (idx, accum)
    }

    /// Returns the child indices at the start and end of the given char
    /// range, and returns their left-side-accumulated char indices as well.
    ///
    /// Return is:
    /// (
    ///     (left_node_index, left_acc_left_side_char_index),
    ///     (right_node_index, right_acc_left_side_char_index),
    /// )
    ///
    /// One-past-the end is valid, and corresponds to the last child.
    #[inline(always)]
    pub fn search_char_idx_range(
        &self,
        start_idx: usize,
        end_idx: usize,
    ) -> ((usize, usize), (usize, usize)) {
        debug_assert!(start_idx <= end_idx);
        debug_assert!(self.len() > 0);

        let mut accum_char_idx = 0;
        let mut idx = 0;

        // Find left child and info
        for info in self.info()[..(self.len() - 1)].iter() {
            let next_accum = accum_char_idx + info.chars as usize;
            if start_idx < next_accum {
                break;
            }
            accum_char_idx = next_accum;
            idx += 1;
        }
        let l_child_i = idx;
        let l_acc_info = accum_char_idx;

        // Find right child and info
        for info in self.info()[idx..(self.len() - 1)].iter() {
            let next_accum = accum_char_idx + info.chars as usize;
            if end_idx <= next_accum {
                break;
            }
            accum_char_idx = next_accum;
            idx += 1;
        }

        #[cfg(any(test, debug_assertions))]
        assert!(
            end_idx <= accum_char_idx + self.info()[idx].chars as usize,
            "Index out of bounds."
        );

        ((l_child_i, l_acc_info), (idx, accum_char_idx))
    }

    // Debug function, to help verify tree integrity
    pub fn is_info_accurate(&self) -> bool {
        for (info, node) in self.info().iter().zip(self.nodes().iter()) {
            if *info != node.text_info() {
                return false;
            }
        }
        true
    }
}

impl fmt::Debug for NodeChildren {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("NodeChildren")
            .field("len", &self.len())
            .field("info", &&self.info())
            .field("nodes", &&self.nodes())
            .finish()
    }
}

//===========================================================================

/// The unsafe guts of NodeChildren, exposed through a safe API.
///
/// Try to keep this as small as possible, and implement functionality on
/// NodeChildren via the safe APIs whenever possible.
///
/// It's split out this way because it was too easy to accidentally access the
/// fixed size arrays directly, leading to memory-unsafety bugs when accidentally
/// accessing elements that are semantically out of bounds.  This happened once,
/// and it was a pain to track down--as memory safety bugs often are.
mod inner {
    use super::{Node, TextInfo, MAX_LEN};
    use std::mem;
    use std::mem::MaybeUninit;
    use std::ptr;
    use std::sync::Arc;

    /// This is essentially a fixed-capacity, stack-allocated `Vec`.  However,
    /// it actually containts _two_ arrays rather than just one, but which
    /// share a length.
    #[repr(C)]
    pub(crate) struct NodeChildrenInternal {
        /// An array of the child nodes.
        /// INVARIANT: The nodes from 0..len must be initialized
        nodes: [MaybeUninit<Arc<Node>>; MAX_LEN],
        /// An array of the child node text infos
        /// INVARIANT: The nodes from 0..len must be initialized
        info: [MaybeUninit<TextInfo>; MAX_LEN],
        len: u8,
    }

    impl NodeChildrenInternal {
        /// Creates a new empty array.
        #[inline(always)]
        pub fn new() -> NodeChildrenInternal {
            // SAFETY: Uninit data is valid for arrays of MaybeUninit.
            // len is zero, so it's ok for all of them to be uninit
            NodeChildrenInternal {
                nodes: unsafe { MaybeUninit::uninit().assume_init() },
                info: unsafe { MaybeUninit::uninit().assume_init() },
                len: 0,
            }
        }

        /// Current length of the array.
        #[inline(always)]
        pub fn len(&self) -> usize {
            self.len as usize
        }

        /// Access to the nodes array.
        #[inline(always)]
        pub fn nodes(&self) -> &[Arc<Node>] {
            // SAFETY: MaybeUninit<T> is layout compatible with T, and
            // the nodes from 0..len are guaranteed to be initialized
            unsafe { mem::transmute(&self.nodes[..(self.len())]) }
        }

        /// Mutable access to the nodes array.
        #[inline(always)]
        pub fn nodes_mut(&mut self) -> &mut [Arc<Node>] {
            // SAFETY: MaybeUninit<T> is layout compatible with T, and
            // the nodes from 0..len are guaranteed to be initialized
            unsafe { mem::transmute(&mut self.nodes[..(self.len as usize)]) }
        }

        /// Access to the info array.
        #[inline(always)]
        pub fn info(&self) -> &[TextInfo] {
            // SAFETY: MaybeUninit<T> is layout compatible with T, and
            // the info from 0..len are guaranteed to be initialized
            unsafe { mem::transmute(&self.info[..(self.len())]) }
        }

        /// Mutable access to the info array.
        #[inline(always)]
        pub fn info_mut(&mut self) -> &mut [TextInfo] {
            // SAFETY: MaybeUninit<T> is layout compatible with T, and
            // the info from 0..len are guaranteed to be initialized
            unsafe { mem::transmute(&mut self.info[..(self.len as usize)]) }
        }

        /// Mutable access to both the info and nodes arrays simultaneously.
        #[inline(always)]
        pub fn data_mut(&mut self) -> (&mut [TextInfo], &mut [Arc<Node>]) {
            // SAFETY: MaybeUninit<T> is layout compatible with T, and
            // the info from 0..len are guaranteed to be initialized
            (
                unsafe { mem::transmute(&mut self.info[..(self.len as usize)]) },
                unsafe { mem::transmute(&mut self.nodes[..(self.len as usize)]) },
            )
        }

        /// Pushes an item into the end of the array.
        ///
        /// Increases length by one.  Panics if already full.
        #[inline(always)]
        pub fn push(&mut self, item: (TextInfo, Arc<Node>)) {
            assert!(self.len() < MAX_LEN);
            self.info[self.len()] = MaybeUninit::new(item.0);
            self.nodes[self.len as usize] = MaybeUninit::new(item.1);
            // We have just initialized both info and node and 0..=len, so we can increase it
            self.len += 1;
        }

        /// Pops an item off the end of the array and returns it.
        ///
        /// Decreases length by one.  Panics if already empty.
        #[inline(always)]
        pub fn pop(&mut self) -> (TextInfo, Arc<Node>) {
            assert!(self.len() > 0);
            self.len -= 1;
            // SAFETY: before this, len was long enough to guarantee that both must be init
            // We just decreased the length, guaranteeing that the elements will never be read again
            (unsafe { self.info[self.len()].assume_init() }, unsafe {
                ptr::read(&self.nodes[self.len()]).assume_init()
            })
        }

        /// Inserts an item into the the array at the given index.
        ///
        /// Increases length by one.  Panics if already full.  Preserves ordering
        /// of the other items.
        #[inline(always)]
        pub fn insert(&mut self, idx: usize, item: (TextInfo, Arc<Node>)) {
            assert!(idx <= self.len());
            assert!(self.len() < MAX_LEN);

            let len = self.len();
            // This unsafe code simply shifts the elements of the arrays over
            // to make space for the new inserted value.  The `.info` array
            // shifting can be done with a safe call to `copy_within()`.
            // However, the `.nodes` array shift cannot, because of the
            // specific drop semantics needed for safety.
            unsafe {
                let ptr = self.nodes.as_mut_ptr();
                ptr::copy(ptr.add(idx), ptr.add(idx + 1), len - idx);
            }
            self.info.copy_within(idx..len, idx + 1);

            // We have just made space for the two new elements, so insert them
            self.info[idx] = MaybeUninit::new(item.0);
            self.nodes[idx] = MaybeUninit::new(item.1);
            // Now that all elements from 0..=len are initialized, we can increase the length
            self.len += 1;
        }

        /// Removes the item at the given index from the the array.
        ///
        /// Decreases length by one.  Preserves ordering of the other items.
        #[inline(always)]
        pub fn remove(&mut self, idx: usize) -> (TextInfo, Arc<Node>) {
            assert!(self.len() > 0);
            assert!(idx < self.len());

            // Read out the elements, they must not be touched again. We copy the elements
            // after them into them, and decrease the length at the end
            let item = (unsafe { self.info[idx].assume_init() }, unsafe {
                ptr::read(&self.nodes[idx]).assume_init()
            });

            let len = self.len();
            // This unsafe code simply shifts the elements of the arrays over
            // to fill in the gap left by the removed element.  The `.info`
            // array shifting can be done with a safe call to `copy_within()`.
            // However, the `.nodes` array shift cannot, because of the
            // specific drop semantics needed for safety.
            unsafe {
                let ptr = self.nodes.as_mut_ptr();
                ptr::copy(ptr.add(idx + 1), ptr.add(idx), len - idx - 1);
            }
            self.info.copy_within((idx + 1)..len, idx);

            // Now that the gap is filled, decrease the length
            self.len -= 1;

            return item;
        }
    }

    impl Drop for NodeChildrenInternal {
        fn drop(&mut self) {
            // The `.nodes` array contains `MaybeUninit` wrappers, which need
            // to be manually dropped if valid.  We drop only the valid ones
            // here.
            for node in &mut self.nodes[..self.len as usize] {
                unsafe { ptr::drop_in_place(node.as_mut_ptr()) };
            }
        }
    }

    impl Clone for NodeChildrenInternal {
        fn clone(&self) -> NodeChildrenInternal {
            // Create an empty NodeChildrenInternal first, then fill it
            let mut clone_array = NodeChildrenInternal::new();

            // Copy nodes... carefully.
            for (clone_arc, arc) in Iterator::zip(
                clone_array.nodes[..self.len()].iter_mut(),
                self.nodes[..self.len()].iter(),
            ) {
                *clone_arc = MaybeUninit::new(Arc::clone(unsafe { &*arc.as_ptr() }));
            }

            // Copy TextInfo
            for (clone_info, info) in Iterator::zip(
                clone_array.info[..self.len()].iter_mut(),
                self.info[..self.len()].iter(),
            ) {
                *clone_info = *info;
            }

            // Set length
            clone_array.len = self.len;

            // Some sanity checks for debug builds
            #[cfg(debug_assertions)]
            {
                for (a, b) in Iterator::zip(
                    (&clone_array.info[..clone_array.len()]).iter(),
                    (&self.info[..self.len()]).iter(),
                ) {
                    assert_eq!(unsafe { a.assume_init() }, unsafe { b.assume_init() },);
                }

                for (a, b) in Iterator::zip(
                    (&clone_array.nodes[..clone_array.len()]).iter(),
                    (&self.nodes[..clone_array.len()]).iter(),
                ) {
                    assert!(Arc::ptr_eq(unsafe { &*a.as_ptr() }, unsafe {
                        &*b.as_ptr()
                    },));
                }
            }

            clone_array
        }
    }
}

//===========================================================================

#[cfg(test)]
mod tests {
    use super::*;
    use crate::tree::{Node, NodeText, TextInfo};
    use std::sync::Arc;

    #[test]
    fn search_char_idx_01() {
        let mut children = NodeChildren::new();
        children.push((
            TextInfo::new(),
            Arc::new(Node::Leaf(NodeText::from_str("Hello "))),
        ));
        children.push((
            TextInfo::new(),
            Arc::new(Node::Leaf(NodeText::from_str("there "))),
        ));
        children.push((
            TextInfo::new(),
            Arc::new(Node::Leaf(NodeText::from_str("world!"))),
        ));

        children.update_child_info(0);
        children.update_child_info(1);
        children.update_child_info(2);

        assert_eq!(0, children.search_char_idx(0).0);
        assert_eq!(0, children.search_char_idx(1).0);
        assert_eq!(0, children.search_char_idx(0).1.chars);
        assert_eq!(0, children.search_char_idx(1).1.chars);

        assert_eq!(0, children.search_char_idx(5).0);
        assert_eq!(1, children.search_char_idx(6).0);
        assert_eq!(0, children.search_char_idx(5).1.chars);
        assert_eq!(6, children.search_char_idx(6).1.chars);

        assert_eq!(1, children.search_char_idx(11).0);
        assert_eq!(2, children.search_char_idx(12).0);
        assert_eq!(6, children.search_char_idx(11).1.chars);
        assert_eq!(12, children.search_char_idx(12).1.chars);

        assert_eq!(2, children.search_char_idx(17).0);
        assert_eq!(2, children.search_char_idx(18).0);
        assert_eq!(12, children.search_char_idx(17).1.chars);
        assert_eq!(12, children.search_char_idx(18).1.chars);
    }

    #[test]
    #[should_panic]
    #[cfg(debug_assertions)]
    fn search_char_idx_02() {
        let mut children = NodeChildren::new();
        children.push((
            TextInfo::new(),
            Arc::new(Node::Leaf(NodeText::from_str("Hello "))),
        ));
        children.push((
            TextInfo::new(),
            Arc::new(Node::Leaf(NodeText::from_str("there "))),
        ));
        children.push((
            TextInfo::new(),
            Arc::new(Node::Leaf(NodeText::from_str("world!"))),
        ));

        children.update_child_info(0);
        children.update_child_info(1);
        children.update_child_info(2);

        children.search_char_idx(19);
    }

    #[test]
    fn search_char_idx_range_01() {
        let mut children = NodeChildren::new();
        children.push((
            TextInfo::new(),
            Arc::new(Node::Leaf(NodeText::from_str("Hello "))),
        ));
        children.push((
            TextInfo::new(),
            Arc::new(Node::Leaf(NodeText::from_str("there "))),
        ));
        children.push((
            TextInfo::new(),
            Arc::new(Node::Leaf(NodeText::from_str("world!"))),
        ));

        children.update_child_info(0);
        children.update_child_info(1);
        children.update_child_info(2);

        let at_0_0 = children.search_char_idx_range(0, 0);
        let at_6_6 = children.search_char_idx_range(6, 6);
        let at_12_12 = children.search_char_idx_range(12, 12);
        let at_18_18 = children.search_char_idx_range(18, 18);

        assert_eq!(0, (at_0_0.0).0);
        assert_eq!(0, (at_0_0.1).0);
        assert_eq!(0, (at_0_0.0).1);
        assert_eq!(0, (at_0_0.1).1);

        assert_eq!(1, (at_6_6.0).0);
        assert_eq!(1, (at_6_6.1).0);
        assert_eq!(6, (at_6_6.0).1);
        assert_eq!(6, (at_6_6.1).1);

        assert_eq!(2, (at_12_12.0).0);
        assert_eq!(2, (at_12_12.1).0);
        assert_eq!(12, (at_12_12.0).1);
        assert_eq!(12, (at_12_12.1).1);

        assert_eq!(2, (at_18_18.0).0);
        assert_eq!(2, (at_18_18.1).0);
        assert_eq!(12, (at_18_18.0).1);
        assert_eq!(12, (at_18_18.1).1);

        let at_0_6 = children.search_char_idx_range(0, 6);
        let at_6_12 = children.search_char_idx_range(6, 12);
        let at_12_18 = children.search_char_idx_range(12, 18);

        assert_eq!(0, (at_0_6.0).0);
        assert_eq!(0, (at_0_6.1).0);
        assert_eq!(0, (at_0_6.0).1);
        assert_eq!(0, (at_0_6.1).1);

        assert_eq!(1, (at_6_12.0).0);
        assert_eq!(1, (at_6_12.1).0);
        assert_eq!(6, (at_6_12.0).1);
        assert_eq!(6, (at_6_12.1).1);

        assert_eq!(2, (at_12_18.0).0);
        assert_eq!(2, (at_12_18.1).0);
        assert_eq!(12, (at_12_18.0).1);
        assert_eq!(12, (at_12_18.1).1);

        let at_5_7 = children.search_char_idx_range(5, 7);
        let at_11_13 = children.search_char_idx_range(11, 13);

        assert_eq!(0, (at_5_7.0).0);
        assert_eq!(1, (at_5_7.1).0);
        assert_eq!(0, (at_5_7.0).1);
        assert_eq!(6, (at_5_7.1).1);

        assert_eq!(1, (at_11_13.0).0);
        assert_eq!(2, (at_11_13.1).0);
        assert_eq!(6, (at_11_13.0).1);
        assert_eq!(12, (at_11_13.1).1);
    }

    #[test]
    #[should_panic]
    fn search_char_idx_range_02() {
        let mut children = NodeChildren::new();
        children.push((
            TextInfo::new(),
            Arc::new(Node::Leaf(NodeText::from_str("Hello "))),
        ));
        children.push((
            TextInfo::new(),
            Arc::new(Node::Leaf(NodeText::from_str("there "))),
        ));
        children.push((
            TextInfo::new(),
            Arc::new(Node::Leaf(NodeText::from_str("world!"))),
        ));

        children.update_child_info(0);
        children.update_child_info(1);
        children.update_child_info(2);

        children.search_char_idx_range(18, 19);
    }

    #[test]
    fn search_line_break_idx_01() {
        let mut children = NodeChildren::new();
        children.push((
            TextInfo::new(),
            Arc::new(Node::Leaf(NodeText::from_str("Hello\n"))),
        ));
        children.push((
            TextInfo::new(),
            Arc::new(Node::Leaf(NodeText::from_str("\nthere\n"))),
        ));
        children.push((
            TextInfo::new(),
            Arc::new(Node::Leaf(NodeText::from_str("world!\n"))),
        ));

        children.update_child_info(0);
        children.update_child_info(1);
        children.update_child_info(2);

        assert_eq!(0, children.search_line_break_idx(0).0);
        assert_eq!(0, children.search_line_break_idx(0).1.line_breaks);

        assert_eq!(0, children.search_line_break_idx(1).0);
        assert_eq!(0, children.search_line_break_idx(1).1.line_breaks);

        assert_eq!(1, children.search_line_break_idx(2).0);
        assert_eq!(1, children.search_line_break_idx(2).1.line_breaks);

        assert_eq!(1, children.search_line_break_idx(3).0);
        assert_eq!(1, children.search_line_break_idx(3).1.line_breaks);

        assert_eq!(2, children.search_line_break_idx(4).0);
        assert_eq!(3, children.search_line_break_idx(4).1.line_breaks);

        assert_eq!(2, children.search_line_break_idx(5).0);
        assert_eq!(3, children.search_line_break_idx(5).1.line_breaks);
    }

    #[test]
    fn search_line_break_idx_02() {
        let mut children = NodeChildren::new();
        children.push((
            TextInfo::new(),
            Arc::new(Node::Leaf(NodeText::from_str("Hello\n"))),
        ));
        children.push((
            TextInfo::new(),
            Arc::new(Node::Leaf(NodeText::from_str("there"))),
        ));
        children.push((
            TextInfo::new(),
            Arc::new(Node::Leaf(NodeText::from_str("world!"))),
        ));

        children.update_child_info(0);
        children.update_child_info(1);
        children.update_child_info(2);

        assert_eq!(0, children.search_line_break_idx(0).0);
        assert_eq!(0, children.search_line_break_idx(0).1.line_breaks);

        assert_eq!(0, children.search_line_break_idx(1).0);
        assert_eq!(0, children.search_line_break_idx(1).1.line_breaks);

        assert_eq!(2, children.search_line_break_idx(2).0);
        assert_eq!(1, children.search_line_break_idx(2).1.line_breaks);
    }

    #[test]
    fn search_line_break_idx_03() {
        let mut children = NodeChildren::new();
        children.push((
            TextInfo::new(),
            Arc::new(Node::Leaf(NodeText::from_str(""))),
        ));

        children.update_child_info(0);

        assert_eq!(0, children.search_line_break_idx(0).0);
        assert_eq!(0, children.search_line_break_idx(0).1.line_breaks);

        assert_eq!(0, children.search_line_break_idx(1).0);
        assert_eq!(0, children.search_line_break_idx(1).1.line_breaks);
    }

    #[test]
    #[should_panic]
    #[cfg(debug_assertions)]
    fn search_line_break_idx_04() {
        let mut children = NodeChildren::new();
        children.push((
            TextInfo::new(),
            Arc::new(Node::Leaf(NodeText::from_str(""))),
        ));

        children.update_child_info(0);

        assert_eq!(0, children.search_line_break_idx(0).0);
        assert_eq!(0, children.search_line_break_idx(0).1.line_breaks);

        assert_eq!(0, children.search_line_break_idx(1).0);
        assert_eq!(0, children.search_line_break_idx(1).1.line_breaks);

        assert_eq!(0, children.search_line_break_idx(2).0);
        assert_eq!(0, children.search_line_break_idx(2).1.line_breaks);
    }
}