rune/modules/cmp.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
//! Comparison and ordering.
use core::cmp::Ordering;
use crate as rune;
use crate::alloc::fmt::TryWrite;
use crate::runtime::{Formatter, Protocol, Value, VmResult};
use crate::shared::Caller;
use crate::{ContextError, Module};
/// Comparison and ordering.
#[rune::module(::std::cmp)]
pub fn module() -> Result<Module, ContextError> {
let mut m = Module::from_meta(self::module_meta)?;
{
let ty = m.ty::<Ordering>()?.docs(docstring! {
/// An `Ordering` is the result of a comparison between two values.
///
/// # Examples
///
/// ```rune
/// use std::cmp::Ordering;
/// use std::ops::cmp;
///
/// let result = 1.cmp(2);
/// assert_eq!(Ordering::Less, result);
///
/// let result = 1.cmp(1);
/// assert_eq!(Ordering::Equal, result);
///
/// let result = 2.cmp(1);
/// assert_eq!(Ordering::Greater, result);
/// ```
})?;
let mut ty = ty.make_enum(&["Less", "Equal", "Greater"])?;
ty.variant_mut(0)?
.make_empty()?
.constructor(|| Ordering::Less)?
.docs(docstring! {
/// "An ordering where a compared value is less than another.
})?;
ty.variant_mut(1)?
.make_empty()?
.constructor(|| Ordering::Equal)?
.docs(docstring! {
/// "An ordering where a compared value is equal to another.
})?;
ty.variant_mut(2)?
.make_empty()?
.constructor(|| Ordering::Greater)?
.docs(docstring! {
/// "An ordering where a compared value is greater than another.
})?;
m.associated_function(
&Protocol::IS_VARIANT,
|this: Ordering, index: usize| match (this, index) {
(Ordering::Less, 0) => true,
(Ordering::Equal, 1) => true,
(Ordering::Greater, 2) => true,
_ => false,
},
)?;
}
m.function_meta(ordering_partial_eq__meta)?;
m.implement_trait::<Ordering>(rune::item!(::std::cmp::PartialEq))?;
m.function_meta(ordering_eq__meta)?;
m.implement_trait::<Ordering>(rune::item!(::std::cmp::Eq))?;
m.function_meta(ordering_debug_fmt)?;
m.function_meta(min__meta)?;
m.function_meta(max__meta)?;
let mut t = m.define_trait(["PartialEq"])?;
t.docs(docstring! {
/// Trait for comparisons using the equality operator.
///
/// Implementing this trait for types provides the `==` and `!=`
/// operators for those types.
///
/// `x.eq(y)` can also be written `x == y`, and `x.ne(y)` can be written
/// `x != y`. We use the easier-to-read infix notation in the remainder
/// of this documentation.
///
/// This trait allows for comparisons using the equality operator, for
/// types that do not have a full equivalence relation. For example, in
/// floating point numbers `NaN != NaN`, so floating point types
/// implement `PartialEq` but not [`trait@Eq`]. Formally speaking, when
/// `Rhs == Self`, this trait corresponds to a [partial equivalence
/// relation].
///
/// [partial equivalence relation]:
/// https://en.wikipedia.org/wiki/Partial_equivalence_relation
///
/// Implementations must ensure that `eq` and `ne` are consistent with
/// each other:
///
/// - `a != b` if and only if `!(a == b)`.
///
/// The default implementation of `ne` provides this consistency and is
/// almost always sufficient. It should not be overridden without very
/// good reason.
///
/// If [`PartialOrd`] or [`Ord`] are also implemented for `Self` and
/// `Rhs`, their methods must also be consistent with `PartialEq` (see
/// the documentation of those traits for the exact requirements). It's
/// easy to accidentally make them disagree by deriving some of the
/// traits and manually implementing others.
///
/// The equality relation `==` must satisfy the following conditions
/// (for all `a`, `b`, `c` of type `A`, `B`, `C`):
///
/// - **Symmetry**: if `A: PartialEq<B>` and `B: PartialEq<A>`, then
/// **`a == b` implies `b == a`**; and
///
/// - **Transitivity**: if `A: PartialEq<B>` and `B: PartialEq<C>` and
/// `A: PartialEq<C>`, then **`a == b` and `b == c` implies `a ==
/// c`**. This must also work for longer chains, such as when `A:
/// PartialEq<B>`, `B: PartialEq<C>`, `C: PartialEq<D>`, and `A:
/// PartialEq<D>` all exist.
///
/// Note that the `B: PartialEq<A>` (symmetric) and `A: PartialEq<C>`
/// (transitive) impls are not forced to exist, but these requirements
/// apply whenever they do exist.
///
/// Violating these requirements is a logic error. The behavior
/// resulting from a logic error is not specified, but users of the
/// trait must ensure that such logic errors do *not* result in
/// undefined behavior. This means that `unsafe` code **must not** rely
/// on the correctness of these methods.
///
/// ## Cross-crate considerations
///
/// Upholding the requirements stated above can become tricky when one
/// crate implements `PartialEq` for a type of another crate (i.e., to
/// allow comparing one of its own types with a type from the standard
/// library). The recommendation is to never implement this trait for a
/// foreign type. In other words, such a crate should do `impl
/// PartialEq<ForeignType> for LocalType`, but it should *not* do `impl
/// PartialEq<LocalType> for ForeignType`.
///
/// This avoids the problem of transitive chains that criss-cross crate
/// boundaries: for all local types `T`, you may assume that no other
/// crate will add `impl`s that allow comparing `T == U`. In other
/// words, if other crates add `impl`s that allow building longer
/// transitive chains `U1 == ... == T == V1 == ...`, then all the types
/// that appear to the right of `T` must be types that the crate
/// defining `T` already knows about. This rules out transitive chains
/// where downstream crates can add new `impl`s that "stitch together"
/// comparisons of foreign types in ways that violate transitivity.
///
/// Not having such foreign `impl`s also avoids forward compatibility
/// issues where one crate adding more `PartialEq` implementations can
/// cause build failures in downstream crates.
///
/// # Examples
///
/// ```rune
/// let x = 0;
/// let y = 1;
///
/// assert_eq!(x == y, false);
/// assert_eq!(x.eq(y), false);
///
/// assert!((1.0).eq(1.0));
/// assert!(!(1.0).eq(2.0));
///
/// assert!(1.0 == 1.0);
/// assert!(1.0 != 2.0);
/// ```
})?;
t.handler(|cx| {
let partial_eq = cx.find(&Protocol::PARTIAL_EQ)?;
let partial_eq = Caller::<(Value, Value), 2, bool>::new(partial_eq);
cx.function("ne", move |a: Value, b: Value| {
VmResult::Ok(!vm_try!(partial_eq.call((a, b))))
})?;
Ok(())
})?;
t.function("eq")?
.argument_types::<(Value, Value)>()?
.return_type::<bool>()?
.docs(docstring! {
/// Compare two values for equality.
///
/// # Examples
///
/// ```rune
/// assert_eq!(1.eq(2), false);
/// assert_eq!(2.eq(2), true);
/// assert_eq!(2.eq(1), false);
/// ```
})?;
t.function("ne")?
.argument_types::<(Value, Value)>()?
.return_type::<bool>()?
.docs(docstring! {
/// Compare two values for inequality.
///
/// # Examples
///
/// ```rune
/// assert_eq!(1.ne(2), true);
/// assert_eq!(2.ne(2), false);
/// assert_eq!(2.ne(1), true);
/// ```
})?;
let mut t = m.define_trait(["Eq"])?;
t.docs(docstring! {
/// Trait for comparisons corresponding to [equivalence relations](
/// https://en.wikipedia.org/wiki/Equivalence_relation).
///
/// This means, that in addition to `a == b` and `a != b` being strict
/// inverses, the relation must be (for all `a`, `b` and `c`):
///
/// - reflexive: `a == a`;
/// - symmetric: `a == b` implies `b == a` (required by `PartialEq` as
/// well); and
/// - transitive: `a == b` and `b == c` implies `a == c` (required by
/// `PartialEq` as well).
///
/// This property cannot be checked by the compiler, and therefore `Eq`
/// implies [`PartialEq`], and has no extra methods.
///
/// Violating this property is a logic error. The behavior resulting
/// from a logic error is not specified, but users of the trait must
/// ensure that such logic errors do *not* result in undefined behavior.
/// This means that `unsafe` code **must not** rely on the correctness
/// of these methods.
///
/// Implement `Eq` in addition to `PartialEq` if it's guaranteed that
/// `PartialEq::eq(a, a)` always returns `true` (reflexivity), in
/// addition to the symmetric and transitive properties already required
/// by `PartialEq`.
/// ```
})?;
t.handler(|cx| {
_ = cx.find(&Protocol::EQ)?;
Ok(())
})?;
t.docs(docstring! {
/// Trait for equality comparisons.
///
/// This trait allows for comparing whether two values are equal or not.
///
/// # Examples
///
/// ```rune
/// use std::cmp::Eq;
///
/// assert!(1.eq(1));
/// assert!(!1.eq(2));
/// ```
})?;
let mut t = m.define_trait(["PartialOrd"])?;
t.docs(docstring! {
/// Trait for types that form a [partial
/// order](https://en.wikipedia.org/wiki/Partial_order).
///
/// The `lt`, `le`, `gt`, and `ge` methods of this trait can be called
/// using the `<`, `<=`, `>`, and `>=` operators, respectively.
///
/// The methods of this trait must be consistent with each other and
/// with those of [`PartialEq`]. The following conditions must hold:
///
/// 1. `a == b` if and only if `partial_cmp(a, b) == Some(Equal)`.
/// 2. `a < b` if and only if `partial_cmp(a, b) == Some(Less)`
/// 3. `a > b` if and only if `partial_cmp(a, b) == Some(Greater)`
/// 4. `a <= b` if and only if `a < b || a == b` 5. `a >= b` if and only
/// if `a > b || a == b`
/// 6. `a != b` if and only if `!(a == b)`.
///
/// Conditions 2–5 above are ensured by the default implementation.
/// Condition 6 is already ensured by [`PartialEq`].
///
/// If [`Ord`] is also implemented for `Self` and `Rhs`, it must also be
/// consistent with `partial_cmp` (see the documentation of that trait
/// for the exact requirements). It's easy to accidentally make them
/// disagree by deriving some of the traits and manually implementing
/// others.
///
/// The comparison relations must satisfy the following conditions (for
/// all `a`, `b`, `c` of type `A`, `B`, `C`):
///
/// - **Transitivity**: if `A: PartialOrd<B>` and `B: PartialOrd<C>` and
/// `A: PartialOrd<C>`, then `a < b` and `b < c` implies `a < c`. The
/// same must hold for both `==` and `>`. This must also work for
/// longer chains, such as when `A: PartialOrd<B>`, `B:
/// PartialOrd<C>`, `C: PartialOrd<D>`, and `A: PartialOrd<D>` all
/// exist.
/// - **Duality**: if `A: PartialOrd<B>` and `B: PartialOrd<A>`, then `a
/// < b` if and only if `b > a`.
///
/// Note that the `B: PartialOrd<A>` (dual) and `A: PartialOrd<C>`
/// (transitive) impls are not forced to exist, but these requirements
/// apply whenever they do exist.
///
/// Violating these requirements is a logic error. The behavior
/// resulting from a logic error is not specified, but users of the
/// trait must ensure that such logic errors do *not* result in
/// undefined behavior. This means that `unsafe` code **must not** rely
/// on the correctness of these methods.
///
/// ## Cross-crate considerations
///
/// Upholding the requirements stated above can become tricky when one
/// crate implements `PartialOrd` for a type of another crate (i.e., to
/// allow comparing one of its own types with a type from the standard
/// library). The recommendation is to never implement this trait for a
/// foreign type. In other words, such a crate should do `impl
/// PartialOrd<ForeignType> for LocalType`, but it should *not* do `impl
/// PartialOrd<LocalType> for ForeignType`.
///
/// This avoids the problem of transitive chains that criss-cross crate
/// boundaries: for all local types `T`, you may assume that no other
/// crate will add `impl`s that allow comparing `T < U`. In other words,
/// if other crates add `impl`s that allow building longer transitive
/// chains `U1 < ... < T < V1 < ...`, then all the types that appear to
/// the right of `T` must be types that the crate defining `T` already
/// knows about. This rules out transitive chains where downstream
/// crates can add new `impl`s that "stitch together" comparisons of
/// foreign types in ways that violate transitivity.
///
/// Not having such foreign `impl`s also avoids forward compatibility
/// issues where one crate adding more `PartialOrd` implementations can
/// cause build failures in downstream crates.
///
/// ## Corollaries
///
/// The following corollaries follow from the above requirements:
///
/// - irreflexivity of `<` and `>`: `!(a < a)`, `!(a > a)`
/// - transitivity of `>`: if `a > b` and `b > c` then `a > c`
/// - duality of `partial_cmp`: `partial_cmp(a, b) == partial_cmp(b,
/// a).map(Ordering::reverse)`
///
/// ## Strict and non-strict partial orders
///
/// The `<` and `>` operators behave according to a *strict* partial
/// order. However, `<=` and `>=` do **not** behave according to a
/// *non-strict* partial order. That is because mathematically, a
/// non-strict partial order would require reflexivity, i.e. `a <= a`
/// would need to be true for every `a`. This isn't always the case for
/// types that implement `PartialOrd`, for example:
///
/// ```
/// let a = f64::sqrt(-1.0);
/// assert_eq!(a <= a, false);
/// ```
///
/// ## How can I implement `PartialOrd`?
///
/// `PartialOrd` only requires implementation of the [`PARTIAL_CMP`]
/// protocol, with the others generated from default implementations.
///
/// However it remains possible to implement the others separately for
/// types which do not have a total order. For example, for floating
/// point numbers, `NaN < 0 == false` and `NaN >= 0 == false` (cf. IEEE
/// 754-2008 section 5.11).
///
/// `PARTIAL_CMP` requires your type to be [`PARTIAL_EQ`].
///
/// If your type is [`ORD`], you can implement [`PARTIAL_CMP`] by using
/// [`CMP`].
///
/// You may also find it useful to use [`PARTIAL_CMP`] on your type's
/// fields.
///
/// # Examples
///
/// ```rune
/// let x = 0;
/// let y = 1;
///
/// assert_eq!(x < y, true);
/// assert_eq!(x.lt(y), true);
/// ```
///
/// [`partial_cmp`]: PartialOrd::partial_cmp
/// [`cmp`]: Ord::cmp
})?;
t.handler(|cx| {
let partial_cmp = cx.find(&Protocol::PARTIAL_CMP)?;
let partial_cmp = Caller::<(Value, Value), 2, Option<Ordering>>::new(partial_cmp);
cx.find_or_define(&Protocol::LT, {
let partial_cmp = partial_cmp.clone();
move |a: Value, b: Value| {
let Some(o) = vm_try!(partial_cmp.call((a.clone(), b.clone()))) else {
return VmResult::Ok(false);
};
VmResult::Ok(matches!(o, Ordering::Less))
}
})?;
cx.find_or_define(&Protocol::LE, {
let partial_cmp = partial_cmp.clone();
move |a: Value, b: Value| {
let Some(o) = vm_try!(partial_cmp.call((a.clone(), b.clone()))) else {
return VmResult::Ok(false);
};
VmResult::Ok(matches!(o, Ordering::Less | Ordering::Equal))
}
})?;
cx.find_or_define(&Protocol::GT, {
let partial_cmp = partial_cmp.clone();
move |a: Value, b: Value| {
let Some(o) = vm_try!(partial_cmp.call((a.clone(), b.clone()))) else {
return VmResult::Ok(false);
};
VmResult::Ok(matches!(o, Ordering::Greater))
}
})?;
cx.find_or_define(&Protocol::GE, {
let partial_cmp = partial_cmp.clone();
move |a: Value, b: Value| {
let Some(o) = vm_try!(partial_cmp.call((a.clone(), b.clone()))) else {
return VmResult::Ok(false);
};
VmResult::Ok(matches!(o, Ordering::Greater | Ordering::Equal))
}
})?;
Ok(())
})?;
t.function("partial_cmp")?
.argument_types::<(Value, Value)>()?
.return_type::<Option<Ordering>>()?
.docs(docstring! {
/// Compare two values.
///
/// # Examples
///
/// ```rune
/// use std::cmp::Ordering;
///
/// assert_eq!(1.partial_cmp(2), Some(Ordering::Less));
/// assert_eq!(2.partial_cmp(2), Some(Ordering::Equal));
/// assert_eq!(2.partial_cmp(1), Some(Ordering::Greater));
/// ```
})?;
t.function("lt")?
.argument_types::<(Value, Value)>()?
.return_type::<bool>()?
.docs(docstring! {
/// Tests less than (for `self` and `other`) and is used by the `<` operator.
///
/// # Examples
///
/// ```rune
/// assert_eq!(1.0 < 1.0, false);
/// assert_eq!(1.0 < 2.0, true);
/// assert_eq!(2.0 < 1.0, false);
/// ```
})?;
t.function("le")?
.argument_types::<(Value, Value)>()?
.return_type::<bool>()?
.docs(docstring! {
/// Tests less than or equal to (for `self` and `other`) and is used
/// by the `<=` operator.
///
/// # Examples
///
/// ```rune
/// assert_eq!(1.0 <= 1.0, true);
/// assert_eq!(1.0 <= 2.0, true);
/// assert_eq!(2.0 <= 1.0, false);
/// ```
})?;
t.function("gt")?
.argument_types::<(Value, Value)>()?
.return_type::<bool>()?
.docs(docstring! {
/// Tests greater than (for `self` and `other`) and is used by the
/// `>` operator.
///
/// # Examples
///
/// ```rune
/// assert_eq!(1.0 > 1.0, false);
/// assert_eq!(1.0 > 2.0, false);
/// assert_eq!(2.0 > 1.0, true);
/// ```
})?;
t.function("ge")?
.argument_types::<(Value, Value)>()?
.return_type::<bool>()?
.docs(docstring! {
/// Tests greater than or equal to (for `self` and `other`) and is
/// used by the `>=` operator.
///
/// # Examples
///
/// ```rune
/// assert_eq!(1.0 >= 1.0, true);
/// assert_eq!(1.0 >= 2.0, false);
/// assert_eq!(2.0 >= 1.0, true);
/// ```
})?;
let mut t = m.define_trait(["Ord"])?;
t.docs(docstring! {
/// Trait for types that form a [total
/// order](https://en.wikipedia.org/wiki/Total_order).
///
/// Implementations must be consistent with the [`PartialOrd`]
/// implementation, and ensure `max`, `min`, and `clamp` are consistent
/// with `cmp`:
///
/// - `partial_cmp(a, b) == Some(cmp(a, b))`.
/// - `max(a, b) == max_by(a, b, cmp)` (ensured by the default
/// implementation).
/// - `min(a, b) == min_by(a, b, cmp)` (ensured by the default
/// implementation).
/// - For `a.clamp(min, max)`, see the [method docs](#method.clamp)
/// (ensured by the default implementation).
///
/// It's easy to accidentally make `cmp` and `partial_cmp` disagree by
/// deriving some of the traits and manually implementing others.
///
/// Violating these requirements is a logic error. The behavior
/// resulting from a logic error is not specified, but users of the
/// trait must ensure that such logic errors do *not* result in
/// undefined behavior. This means that `unsafe` code **must not** rely
/// on the correctness of these methods.
///
/// ## Corollaries
///
/// From the above and the requirements of `PartialOrd`, it follows that
/// for all `a`, `b` and `c`:
///
/// - exactly one of `a < b`, `a == b` or `a > b` is true; and
/// - `<` is transitive: `a < b` and `b < c` implies `a < c`. The same
/// must hold for both `==` and `>`.
///
/// Mathematically speaking, the `<` operator defines a strict [weak
/// order]. In cases where `==` conforms to mathematical equality, it
/// also defines a strict [total order].
///
/// [weak order]: https://en.wikipedia.org/wiki/Weak_ordering
/// [total order]: https://en.wikipedia.org/wiki/Total_order
///
/// ## Lexicographical comparison
///
/// Lexicographical comparison is an operation with the following
/// properties:
/// - Two sequences are compared element by element.
/// - The first mismatching element defines which sequence is
/// lexicographically less or greater than the other.
/// - If one sequence is a prefix of another, the shorter sequence is
/// lexicographically less than the other.
/// - If two sequences have equivalent elements and are of the same
/// length, then the sequences are lexicographically equal.
/// - An empty sequence is lexicographically less than any non-empty
/// sequence.
/// - Two empty sequences are lexicographically equal.
///
/// ## How can I implement `Ord`?
///
/// `Ord` requires that the type also be [`PARTIAL_RD`] and [`EQ`]
/// (which requires [`PARTIAL_EQ`]).
///
/// Then you must define an implementation for [`CMP`]. You may find it
/// useful to use [`CMP`] on your type's fields.
})?;
t.handler(|cx| {
let cmp = cx.find(&Protocol::CMP)?;
let cmp = Caller::<(Value, Value), 2, Ordering>::new(cmp);
cx.find_or_define(&Protocol::MIN, {
let cmp = cmp.clone();
move |a: Value, b: Value| match vm_try!(cmp.call((a.clone(), b.clone()))) {
Ordering::Less | Ordering::Equal => VmResult::Ok(a),
Ordering::Greater => VmResult::Ok(b),
}
})?;
cx.find_or_define(&Protocol::MAX, {
let cmp = cmp.clone();
move |a: Value, b: Value| match vm_try!(cmp.call((a.clone(), b.clone()))) {
Ordering::Less | Ordering::Equal => VmResult::Ok(b),
Ordering::Greater => VmResult::Ok(a),
}
})?;
Ok(())
})?;
t.function("cmp")?
.argument_types::<(Value, Value)>()?
.return_type::<Ordering>()?
.docs(docstring! {
/// Compare two values.
///
/// # Examples
///
/// ```rune
/// use std::cmp::Ordering;
///
/// assert_eq!(1.cmp(2), Ordering::Less);
/// assert_eq!(2.cmp(2), Ordering::Equal);
/// assert_eq!(2.cmp(1), Ordering::Greater);
/// ```
})?;
t.function("min")?
.argument_types::<(Value, Value)>()?
.return_type::<Ordering>()?
.docs(docstring! {
/// Return the minimum of two values.
///
/// # Examples
///
/// ```rune
/// assert_eq!(1.min(2), 1);
/// assert_eq!(2.min(2), 2);
/// assert_eq!(2.min(1), 1);
/// ```
})?;
t.function("max")?
.argument_types::<(Value, Value)>()?
.return_type::<Ordering>()?
.docs(docstring! {
/// Return the maximum of two values.
///
/// # Examples
///
/// ```rune
/// assert_eq!(1.max(2), 2);
/// assert_eq!(2.max(2), 2);
/// assert_eq!(2.max(1), 2);
/// ```
})?;
Ok(m)
}
/// Compares and returns the maximum of two values.
///
/// Returns the second argument if the comparison determines them to be equal.
///
/// Internally uses the [`CMP`] protocol.
///
/// # Examples
///
/// ```rune
/// use std::cmp::max;
///
/// assert_eq!(max(1, 2), 2);
/// assert_eq!(max(2, 2), 2);
/// ```
#[rune::function(keep)]
fn max(v1: Value, v2: Value) -> VmResult<Value> {
VmResult::Ok(match vm_try!(Value::cmp(&v1, &v2)) {
Ordering::Less | Ordering::Equal => v2,
Ordering::Greater => v1,
})
}
/// Compares and returns the minimum of two values.
///
/// Returns the first argument if the comparison determines them to be equal.
///
/// Internally uses the [`CMP`] protocol.
///
/// # Examples
///
/// ```rune
/// use std::cmp::min;
///
/// assert_eq!(min(1, 2), 1);
/// assert_eq!(min(2, 2), 2);
/// ```
#[rune::function(keep)]
fn min(v1: Value, v2: Value) -> VmResult<Value> {
VmResult::Ok(match vm_try!(Value::cmp(&v1, &v2)) {
Ordering::Less | Ordering::Equal => v1,
Ordering::Greater => v2,
})
}
/// Perform a partial ordering equality test.
///
/// # Examples
///
/// ```rune
/// use std::cmp::Ordering;
///
/// assert!(Ordering::Less == Ordering::Less);
/// assert!(Ordering::Less != Ordering::Equal);
/// ```
#[rune::function(keep, instance, protocol = PARTIAL_EQ)]
fn ordering_partial_eq(this: Ordering, other: Ordering) -> bool {
this == other
}
/// Perform a total ordering equality test.
///
/// # Examples
///
/// ```rune
/// use std::ops::eq;
/// use std::cmp::Ordering;
///
/// assert!(eq(Ordering::Less, Ordering::Less));
/// assert!(!eq(Ordering::Less, Ordering::Equal));
/// ```
#[rune::function(keep, instance, protocol = EQ)]
fn ordering_eq(this: Ordering, other: Ordering) -> bool {
this == other
}
/// Debug format [`Ordering`].
///
/// # Examples
///
/// ```rune
/// use std::cmp::Ordering;
///
/// assert_eq!(format!("{:?}", Ordering::Less), "Less");
/// ```
#[rune::function(instance, protocol = DEBUG_FMT)]
fn ordering_debug_fmt(this: Ordering, s: &mut Formatter) -> VmResult<()> {
vm_write!(s, "{:?}", this)
}