rune_alloc/vec_deque/drain.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
use core::fmt;
use core::iter::FusedIterator;
use core::marker::PhantomData;
use core::mem;
use crate::alloc::{Allocator, Global, SizedTypeProperties};
use crate::ptr::{self, NonNull};
use super::VecDeque;
/// A draining iterator over the elements of a `VecDeque`.
///
/// This `struct` is created by the [`drain`] method on [`VecDeque`]. See its
/// documentation for more.
///
/// [`drain`]: VecDeque::drain
pub struct Drain<'a, T: 'a, A: Allocator = Global> {
// We can't just use a &mut VecDeque<T, A>, as that would make Drain invariant over T
// and we want it to be covariant instead
deque: NonNull<VecDeque<T, A>>,
// drain_start is stored in deque.len
drain_len: usize,
// index into the logical array, not the physical one (always lies in [0..deque.len))
idx: usize,
// number of elements after the drain range
tail_len: usize,
remaining: usize,
// Needed to make Drain covariant over T
_marker: PhantomData<&'a T>,
}
impl<'a, T, A: Allocator> Drain<'a, T, A> {
pub(super) unsafe fn new(
deque: &'a mut VecDeque<T, A>,
drain_start: usize,
drain_len: usize,
) -> Self {
let orig_len = mem::replace(&mut deque.len, drain_start);
let tail_len = orig_len - drain_start - drain_len;
Drain {
deque: NonNull::from(deque),
drain_len,
idx: drain_start,
tail_len,
remaining: drain_len,
_marker: PhantomData,
}
}
// Only returns pointers to the slices, as that's all we need
// to drop them. May only be called if `self.remaining != 0`.
unsafe fn as_slices(&self) -> (*mut [T], *mut [T]) {
unsafe {
let deque = self.deque.as_ref();
// We know that `self.idx + self.remaining <= deque.len <= usize::MAX`, so this won't overflow.
let logical_remaining_range = self.idx..self.idx + self.remaining;
// SAFETY: `logical_remaining_range` represents the
// range into the logical buffer of elements that
// haven't been drained yet, so they're all initialized,
// and `slice::range(start..end, end) == start..end`,
// so the preconditions for `slice_ranges` are met.
let (a_range, b_range) =
deque.slice_ranges(logical_remaining_range.clone(), logical_remaining_range.end);
(deque.buffer_range(a_range), deque.buffer_range(b_range))
}
}
}
impl<T: fmt::Debug, A: Allocator> fmt::Debug for Drain<'_, T, A> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_tuple("Drain")
.field(&self.drain_len)
.field(&self.idx)
.field(&self.tail_len)
.field(&self.remaining)
.finish()
}
}
unsafe impl<T: Sync, A: Allocator + Sync> Sync for Drain<'_, T, A> {}
unsafe impl<T: Send, A: Allocator + Send> Send for Drain<'_, T, A> {}
impl<T, A: Allocator> Drop for Drain<'_, T, A> {
fn drop(&mut self) {
struct DropGuard<'r, 'a, T, A: Allocator>(&'r mut Drain<'a, T, A>);
impl<T, A: Allocator> Drop for DropGuard<'_, '_, T, A> {
fn drop(&mut self) {
if self.0.remaining != 0 {
unsafe {
// SAFETY: We just checked that `self.remaining != 0`.
let (front, back) = self.0.as_slices();
ptr::drop_in_place(front);
ptr::drop_in_place(back);
}
}
let source_deque = unsafe { self.0.deque.as_mut() };
let drain_start = source_deque.len();
let drain_len = self.0.drain_len;
let drain_end = drain_start + drain_len;
let orig_len = self.0.tail_len + drain_end;
if T::IS_ZST {
// no need to copy around any memory if T is a ZST
source_deque.len = orig_len - drain_len;
return;
}
let head_len = drain_start;
let tail_len = self.0.tail_len;
match (head_len, tail_len) {
(0, 0) => {
source_deque.head = 0;
source_deque.len = 0;
}
(0, _) => {
source_deque.head = source_deque.to_physical_idx(drain_len);
source_deque.len = orig_len - drain_len;
}
(_, 0) => {
source_deque.len = orig_len - drain_len;
}
_ => unsafe {
if head_len <= tail_len {
source_deque.wrap_copy(
source_deque.head,
source_deque.to_physical_idx(drain_len),
head_len,
);
source_deque.head = source_deque.to_physical_idx(drain_len);
source_deque.len = orig_len - drain_len;
} else {
source_deque.wrap_copy(
source_deque.to_physical_idx(head_len + drain_len),
source_deque.to_physical_idx(head_len),
tail_len,
);
source_deque.len = orig_len - drain_len;
}
},
}
}
}
let guard = DropGuard(self);
if guard.0.remaining != 0 {
unsafe {
// SAFETY: We just checked that `self.remaining != 0`.
let (front, back) = guard.0.as_slices();
// since idx is a logical index, we don't need to worry about wrapping.
guard.0.idx += ptr::slice_len(front);
guard.0.remaining -= ptr::slice_len(front);
ptr::drop_in_place(front);
guard.0.remaining = 0;
ptr::drop_in_place(back);
}
}
// Dropping `guard` handles moving the remaining elements into place.
}
}
impl<T, A: Allocator> Iterator for Drain<'_, T, A> {
type Item = T;
#[inline]
fn next(&mut self) -> Option<T> {
if self.remaining == 0 {
return None;
}
let wrapped_idx = unsafe { self.deque.as_ref().to_physical_idx(self.idx) };
self.idx += 1;
self.remaining -= 1;
Some(unsafe { self.deque.as_mut().buffer_read(wrapped_idx) })
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let len = self.remaining;
(len, Some(len))
}
}
impl<T, A: Allocator> DoubleEndedIterator for Drain<'_, T, A> {
#[inline]
fn next_back(&mut self) -> Option<T> {
if self.remaining == 0 {
return None;
}
self.remaining -= 1;
let wrapped_idx = unsafe {
self.deque
.as_ref()
.to_physical_idx(self.idx + self.remaining)
};
Some(unsafe { self.deque.as_mut().buffer_read(wrapped_idx) })
}
}
impl<T, A: Allocator> ExactSizeIterator for Drain<'_, T, A> {}
impl<T, A: Allocator> FusedIterator for Drain<'_, T, A> {}