rune_alloc/limit/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
//! Memory limits for Rune.
//!
//! This module contains methods which allows for limiting the memory use of the
//! virtual machine to abide by the specified memory limit.
//!
//! By default memory limits are disabled, but can be enabled by wrapping your
//! function call or future in [with].
//!
//! # Limitations
//!
//! Limiting is plugged in at the [Rust allocator level], and does not account
//! for allocator overhead. Allocator overhead comes about because an allocator
//! needs to use some extra system memory to perform internal bookkeeping.
//! Usually this should not be an issue, because the allocator overhead should
//! be a fragment of memory use. But the exact details would depend on the
//! [global allocator] used.
//!
//! As an example, see the [implementation notes for jemalloc].
//!
//! [implementation notes for jemalloc]:
//!     http://jemalloc.net/jemalloc.3.html#implementation_notes
//! [Rust allocator level]: https://doc.rust-lang.org/alloc/alloc/index.html
//! [global allocator]:
//!     https://doc.rust-lang.org/alloc/alloc/trait.GlobalAlloc.html

#[cfg_attr(feature = "std", path = "std.rs")]
mod no_std;

use core::future::Future;
use core::pin::Pin;
use core::task::{Context, Poll};

use pin_project::pin_project;

use crate::callable::Callable;

/// Something being budgeted.
///
/// See [`with`].
#[pin_project]
pub struct Memory<T> {
    /// The current limit.
    memory: usize,
    /// The thing being budgeted.
    #[pin]
    value: T,
}

/// Wrap the given value with a memory limit. Using a value of [`usize::MAX`]
/// effectively disables the memory limit.
///
/// The following things can be wrapped:
/// * A [`FnOnce`] closure, like `with(|| println!("Hello World")).call()`.
/// * A [`Future`], like `with(async { /* async work */ }).await`;
///
/// It's also possible to wrap other wrappers which implement [`Callable`].
///
/// See the [module level documentation] for more details.
///
/// [module level documentation]: crate::limit
///
/// # Examples
///
/// ```
/// use rune::alloc::limit;
/// use rune::alloc::Vec;
///
/// let f = limit::with(1024, || {
///     let mut vec = Vec::<u32>::try_with_capacity(256)?;
///
///     for n in 0..256u32 {
///         vec.try_push(n)?;
///     }
///
///     Ok::<_, rune::alloc::Error>(vec.into_iter().sum::<u32>())
/// });
///
/// let sum = f.call()?;
/// assert_eq!(sum, 32640);
/// # Ok::<_, rune::alloc::Error>(())
/// ```
///
/// Breaching the limit. Note that this happens because while the vector is
/// growing it might both over-allocate, and hold onto two allocations
/// simultaneously.
///
/// ```
/// use rune::alloc::limit;
/// use rune::alloc::Vec;
///
/// let f = limit::with(1024, || {
///     let mut vec = Vec::<u32>::new();
///
///     for n in 0..256u32 {
///         vec.try_push(n)?;
///     }
///
///     Ok::<_, rune::alloc::Error>(vec.into_iter().sum::<u32>())
/// });
///
/// assert!(f.call().is_err());
/// ```
pub fn with<T>(memory: usize, value: T) -> Memory<T> {
    Memory { memory, value }
}

/// Get remaining memory that may be allocated.
///
/// # Examples
///
/// Example dealing with trait objects that were allocated externally:
///
/// ```
/// use rune::alloc::{Box, Vec};
/// use rune::alloc::limit;
/// use std::boxed::Box as StdBox;
///
/// assert_eq!(limit::get(), usize::MAX);
///
/// let b: StdBox<dyn Iterator<Item = u32>> = StdBox::new(1..3);
/// let mut b = Box::from_std(b)?;
/// assert_eq!(b.next(), Some(1));
/// assert_eq!(b.next(), Some(2));
/// assert_eq!(b.next(), None);
///
/// assert!(limit::get() < usize::MAX);
/// drop(b);
///
/// assert_eq!(limit::get(), usize::MAX);
/// # Ok::<_, rune::alloc::Error>(())
/// ```
pub fn get() -> usize {
    self::no_std::rune_memory_get()
}

/// Take memory from the current budget.
#[inline(never)]
pub(crate) fn take(amount: usize) -> bool {
    self::no_std::rune_memory_take(amount)
}

/// Release memory from the current budget.
#[inline(never)]
pub(crate) fn release(amount: usize) {
    self::no_std::rune_memory_release(amount);
}

#[repr(transparent)]
struct MemoryGuard(usize);

impl Drop for MemoryGuard {
    fn drop(&mut self) {
        let _ = self::no_std::rune_memory_replace(self.0);
    }
}

impl<T> Memory<T>
where
    T: Callable,
{
    /// Call the wrapped function, replacing the current budget and restoring it
    /// once the function call completes.
    ///
    /// # Examples
    ///
    /// ```
    /// use rune::alloc::limit;
    /// use rune::alloc::{Box, Result};
    /// use rune::alloc::alloc::AllocError;
    ///
    /// const LIMIT: usize = 1024;
    ///
    /// fn doit() -> Result<Box<[u8; 256]>, AllocError> {
    ///     Box::try_new([0u8; 256])
    /// }
    ///
    /// fn limited() -> Result<()> {
    ///     assert_eq!(limit::get(), LIMIT);
    ///
    ///     // Hold onto a 256 byte allocation.
    ///     let b = doit()?;
    ///     assert_eq!(limit::get(), LIMIT - 256);
    ///
    ///     // Drop the allocation, making the memory available again.
    ///     drop(b);
    ///     assert_eq!(limit::get(), LIMIT);
    ///     Ok(())
    /// }
    ///
    /// let inner = limit::with(LIMIT, limited);
    ///
    /// assert_eq!(limit::get(), usize::MAX);
    /// inner.call()?;
    /// assert_eq!(limit::get(), usize::MAX);
    /// # Ok::<_, rune::alloc::Error>(())
    /// ```
    ///
    /// Limit being restored after its been breached:
    ///
    /// ```
    /// use rune::alloc::limit;
    /// use rune::alloc::{Box, Result};
    /// use rune::alloc::alloc::AllocError;
    ///
    /// const LIMIT: usize = 128;
    ///
    /// fn doit() -> Result<Box<[u8; 256]>, AllocError> {
    ///     Box::try_new([0u8; 256])
    /// }
    ///
    /// fn limited() -> Result<()> {
    ///     assert_eq!(limit::get(), LIMIT);
    ///
    ///     // Fail to allocate since we don't have enough memory available.
    ///     assert!(doit().is_err());
    ///
    ///     assert_eq!(limit::get(), LIMIT);
    ///     Ok(())
    /// }
    ///
    /// let inner = limit::with(LIMIT, limited);
    ///
    /// assert_eq!(limit::get(), usize::MAX);
    /// inner.call()?;
    /// assert_eq!(limit::get(), usize::MAX);
    /// # Ok::<_, rune::alloc::Error>(())
    /// ```
    pub fn call(self) -> T::Output {
        Callable::call(self)
    }
}

impl<T> Callable for Memory<T>
where
    T: Callable,
{
    type Output = T::Output;

    #[inline]
    fn call(self) -> Self::Output {
        let _guard = MemoryGuard(self::no_std::rune_memory_replace(self.memory));
        self.value.call()
    }
}

/// Treat the current budget as a future, ensuring that the budget is suspended
/// and restored as necessary when the future is being polled.
///
/// # Examples
///
/// ```
/// use rune::alloc::limit;
/// use rune::alloc::{Box, Result};
/// use rune::alloc::alloc::AllocError;
///
/// const LIMIT: usize = 1024;
///
/// async fn doit() -> Result<Box<[u8; 256]>, AllocError> {
///     Box::try_new([0u8; 256])
/// }
///
/// async fn limited() -> Result<()> {
///     assert_eq!(limit::get(), LIMIT);
///
///     // Hold onto a 256 byte allocation.
///     let b = doit().await?;
///     assert_eq!(limit::get(), LIMIT - 256);
///
///     // Drop the allocation, making the memory available again.
///     drop(b);
///     assert_eq!(limit::get(), LIMIT);
///     Ok(())
/// }
///
/// # #[tokio::main(flavor = "current_thread")]
/// # async fn main() -> rune::alloc::Result<()> {
/// let inner = limit::with(LIMIT, limited());
///
/// assert_eq!(limit::get(), usize::MAX);
/// inner.await?;
/// assert_eq!(limit::get(), usize::MAX);
/// # Ok::<_, rune::alloc::Error>(())
/// # }
/// ```
///
/// Limit being restored after its been breached:
///
/// ```
/// use rune::alloc::limit;
/// use rune::alloc::{Box, Result};
/// use rune::alloc::alloc::AllocError;
///
/// const LIMIT: usize = 128;
///
/// async fn doit() -> Result<Box<[u8; 256]>, AllocError> {
///     Box::try_new([0u8; 256])
/// }
///
/// async fn limited() -> Result<()> {
///     assert_eq!(limit::get(), LIMIT);
///
///     // Fail to allocate since we don't have enough memory available.
///     assert!(doit().await.is_err());
///
///     assert_eq!(limit::get(), LIMIT);
///     Ok(())
/// }
///
/// # #[tokio::main(flavor = "current_thread")]
/// # async fn main() -> rune::alloc::Result<()> {
/// let inner = limit::with(LIMIT, limited());
///
/// assert_eq!(limit::get(), usize::MAX);
/// inner.await?;
/// assert_eq!(limit::get(), usize::MAX);
/// # Ok::<_, rune::alloc::Error>(())
/// # }
/// ```
impl<T> Future for Memory<T>
where
    T: Future,
{
    type Output = T::Output;

    fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        let this = self.project();

        let _guard = MemoryGuard(self::no_std::rune_memory_replace(*this.memory));
        let poll = this.value.poll(cx);
        *this.memory = self::no_std::rune_memory_get();
        poll
    }
}