rune_alloc/limit/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
//! Memory limits for Rune.
//!
//! This module contains methods which allows for limiting the memory use of the
//! virtual machine to abide by the specified memory limit.
//!
//! By default memory limits are disabled, but can be enabled by wrapping your
//! function call or future in [with].
//!
//! # Limitations
//!
//! Limiting is plugged in at the [Rust allocator level], and does not account
//! for allocator overhead. Allocator overhead comes about because an allocator
//! needs to use some extra system memory to perform internal bookkeeping.
//! Usually this should not be an issue, because the allocator overhead should
//! be a fragment of memory use. But the exact details would depend on the
//! [global allocator] used.
//!
//! As an example, see the [implementation notes for jemalloc].
//!
//! [implementation notes for jemalloc]:
//! http://jemalloc.net/jemalloc.3.html#implementation_notes
//! [Rust allocator level]: https://doc.rust-lang.org/alloc/alloc/index.html
//! [global allocator]:
//! https://doc.rust-lang.org/alloc/alloc/trait.GlobalAlloc.html
#[cfg_attr(feature = "std", path = "std.rs")]
mod no_std;
use core::future::Future;
use core::pin::Pin;
use core::task::{Context, Poll};
use pin_project::pin_project;
use crate::callable::Callable;
/// Something being budgeted.
///
/// See [`with`].
#[pin_project]
pub struct Memory<T> {
/// The current limit.
memory: usize,
/// The thing being budgeted.
#[pin]
value: T,
}
/// Wrap the given value with a memory limit. Using a value of [`usize::MAX`]
/// effectively disables the memory limit.
///
/// The following things can be wrapped:
/// * A [`FnOnce`] closure, like `with(|| println!("Hello World")).call()`.
/// * A [`Future`], like `with(async { /* async work */ }).await`;
///
/// It's also possible to wrap other wrappers which implement [`Callable`].
///
/// See the [module level documentation] for more details.
///
/// [module level documentation]: crate::limit
///
/// # Examples
///
/// ```
/// use rune::alloc::limit;
/// use rune::alloc::Vec;
///
/// let f = limit::with(1024, || {
/// let mut vec = Vec::<u32>::try_with_capacity(256)?;
///
/// for n in 0..256u32 {
/// vec.try_push(n)?;
/// }
///
/// Ok::<_, rune::alloc::Error>(vec.into_iter().sum::<u32>())
/// });
///
/// let sum = f.call()?;
/// assert_eq!(sum, 32640);
/// # Ok::<_, rune::alloc::Error>(())
/// ```
///
/// Breaching the limit. Note that this happens because while the vector is
/// growing it might both over-allocate, and hold onto two allocations
/// simultaneously.
///
/// ```
/// use rune::alloc::limit;
/// use rune::alloc::Vec;
///
/// let f = limit::with(1024, || {
/// let mut vec = Vec::<u32>::new();
///
/// for n in 0..256u32 {
/// vec.try_push(n)?;
/// }
///
/// Ok::<_, rune::alloc::Error>(vec.into_iter().sum::<u32>())
/// });
///
/// assert!(f.call().is_err());
/// ```
pub fn with<T>(memory: usize, value: T) -> Memory<T> {
Memory { memory, value }
}
/// Get remaining memory that may be allocated.
///
/// # Examples
///
/// Example dealing with trait objects that were allocated externally:
///
/// ```
/// use rune::alloc::{Box, Vec};
/// use rune::alloc::limit;
/// use std::boxed::Box as StdBox;
///
/// assert_eq!(limit::get(), usize::MAX);
///
/// let b: StdBox<dyn Iterator<Item = u32>> = StdBox::new(1..3);
/// let mut b = Box::from_std(b)?;
/// assert_eq!(b.next(), Some(1));
/// assert_eq!(b.next(), Some(2));
/// assert_eq!(b.next(), None);
///
/// assert!(limit::get() < usize::MAX);
/// drop(b);
///
/// assert_eq!(limit::get(), usize::MAX);
/// # Ok::<_, rune::alloc::Error>(())
/// ```
pub fn get() -> usize {
self::no_std::rune_memory_get()
}
/// Take memory from the current budget.
#[inline(never)]
pub(crate) fn take(amount: usize) -> bool {
self::no_std::rune_memory_take(amount)
}
/// Release memory from the current budget.
#[inline(never)]
pub(crate) fn release(amount: usize) {
self::no_std::rune_memory_release(amount);
}
#[repr(transparent)]
struct MemoryGuard(usize);
impl Drop for MemoryGuard {
fn drop(&mut self) {
let _ = self::no_std::rune_memory_replace(self.0);
}
}
impl<T> Memory<T>
where
T: Callable,
{
/// Call the wrapped function, replacing the current budget and restoring it
/// once the function call completes.
///
/// # Examples
///
/// ```
/// use rune::alloc::limit;
/// use rune::alloc::{Box, Result};
/// use rune::alloc::alloc::AllocError;
///
/// const LIMIT: usize = 1024;
///
/// fn doit() -> Result<Box<[u8; 256]>, AllocError> {
/// Box::try_new([0u8; 256])
/// }
///
/// fn limited() -> Result<()> {
/// assert_eq!(limit::get(), LIMIT);
///
/// // Hold onto a 256 byte allocation.
/// let b = doit()?;
/// assert_eq!(limit::get(), LIMIT - 256);
///
/// // Drop the allocation, making the memory available again.
/// drop(b);
/// assert_eq!(limit::get(), LIMIT);
/// Ok(())
/// }
///
/// let inner = limit::with(LIMIT, limited);
///
/// assert_eq!(limit::get(), usize::MAX);
/// inner.call()?;
/// assert_eq!(limit::get(), usize::MAX);
/// # Ok::<_, rune::alloc::Error>(())
/// ```
///
/// Limit being restored after its been breached:
///
/// ```
/// use rune::alloc::limit;
/// use rune::alloc::{Box, Result};
/// use rune::alloc::alloc::AllocError;
///
/// const LIMIT: usize = 128;
///
/// fn doit() -> Result<Box<[u8; 256]>, AllocError> {
/// Box::try_new([0u8; 256])
/// }
///
/// fn limited() -> Result<()> {
/// assert_eq!(limit::get(), LIMIT);
///
/// // Fail to allocate since we don't have enough memory available.
/// assert!(doit().is_err());
///
/// assert_eq!(limit::get(), LIMIT);
/// Ok(())
/// }
///
/// let inner = limit::with(LIMIT, limited);
///
/// assert_eq!(limit::get(), usize::MAX);
/// inner.call()?;
/// assert_eq!(limit::get(), usize::MAX);
/// # Ok::<_, rune::alloc::Error>(())
/// ```
pub fn call(self) -> T::Output {
Callable::call(self)
}
}
impl<T> Callable for Memory<T>
where
T: Callable,
{
type Output = T::Output;
#[inline]
fn call(self) -> Self::Output {
let _guard = MemoryGuard(self::no_std::rune_memory_replace(self.memory));
self.value.call()
}
}
/// Treat the current budget as a future, ensuring that the budget is suspended
/// and restored as necessary when the future is being polled.
///
/// # Examples
///
/// ```
/// use rune::alloc::limit;
/// use rune::alloc::{Box, Result};
/// use rune::alloc::alloc::AllocError;
///
/// const LIMIT: usize = 1024;
///
/// async fn doit() -> Result<Box<[u8; 256]>, AllocError> {
/// Box::try_new([0u8; 256])
/// }
///
/// async fn limited() -> Result<()> {
/// assert_eq!(limit::get(), LIMIT);
///
/// // Hold onto a 256 byte allocation.
/// let b = doit().await?;
/// assert_eq!(limit::get(), LIMIT - 256);
///
/// // Drop the allocation, making the memory available again.
/// drop(b);
/// assert_eq!(limit::get(), LIMIT);
/// Ok(())
/// }
///
/// # #[tokio::main(flavor = "current_thread")]
/// # async fn main() -> rune::alloc::Result<()> {
/// let inner = limit::with(LIMIT, limited());
///
/// assert_eq!(limit::get(), usize::MAX);
/// inner.await?;
/// assert_eq!(limit::get(), usize::MAX);
/// # Ok::<_, rune::alloc::Error>(())
/// # }
/// ```
///
/// Limit being restored after its been breached:
///
/// ```
/// use rune::alloc::limit;
/// use rune::alloc::{Box, Result};
/// use rune::alloc::alloc::AllocError;
///
/// const LIMIT: usize = 128;
///
/// async fn doit() -> Result<Box<[u8; 256]>, AllocError> {
/// Box::try_new([0u8; 256])
/// }
///
/// async fn limited() -> Result<()> {
/// assert_eq!(limit::get(), LIMIT);
///
/// // Fail to allocate since we don't have enough memory available.
/// assert!(doit().await.is_err());
///
/// assert_eq!(limit::get(), LIMIT);
/// Ok(())
/// }
///
/// # #[tokio::main(flavor = "current_thread")]
/// # async fn main() -> rune::alloc::Result<()> {
/// let inner = limit::with(LIMIT, limited());
///
/// assert_eq!(limit::get(), usize::MAX);
/// inner.await?;
/// assert_eq!(limit::get(), usize::MAX);
/// # Ok::<_, rune::alloc::Error>(())
/// # }
/// ```
impl<T> Future for Memory<T>
where
T: Future,
{
type Output = T::Output;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let this = self.project();
let _guard = MemoryGuard(self::no_std::rune_memory_replace(*this.memory));
let poll = this.value.poll(cx);
*this.memory = self::no_std::rune_memory_get();
poll
}
}