rune_alloc/btree/fix.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
use crate::alloc::Allocator;
use super::map::MIN_LEN;
use super::node::{marker, ForceResult::*, Handle, LeftOrRight::*, NodeRef, Root};
impl<'a, K: 'a, V: 'a> NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal> {
/// Stocks up a possibly underfull node by merging with or stealing from a
/// sibling. If successful but at the cost of shrinking the parent node,
/// returns that shrunk parent node. Returns an `Err` if the node is
/// an empty root.
fn fix_node_through_parent<A: Allocator>(
self,
alloc: &A,
) -> Result<Option<NodeRef<marker::Mut<'a>, K, V, marker::Internal>>, Self> {
let len = self.len();
if len >= MIN_LEN {
Ok(None)
} else {
match self.choose_parent_kv() {
Ok(Left(mut left_parent_kv)) => {
if left_parent_kv.can_merge() {
let parent = left_parent_kv.merge_tracking_parent(alloc);
Ok(Some(parent))
} else {
left_parent_kv.bulk_steal_left(MIN_LEN - len);
Ok(None)
}
}
Ok(Right(mut right_parent_kv)) => {
if right_parent_kv.can_merge() {
let parent = right_parent_kv.merge_tracking_parent(alloc);
Ok(Some(parent))
} else {
right_parent_kv.bulk_steal_right(MIN_LEN - len);
Ok(None)
}
}
Err(root) => {
if len > 0 {
Ok(None)
} else {
Err(root)
}
}
}
}
}
}
impl<'a, K: 'a, V: 'a> NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal> {
/// Stocks up a possibly underfull node, and if that causes its parent node
/// to shrink, stocks up the parent, recursively.
/// Returns `true` if it fixed the tree, `false` if it couldn't because the
/// root node became empty.
///
/// This method does not expect ancestors to already be underfull upon entry
/// and panics if it encounters an empty ancestor.
pub(crate) fn fix_node_and_affected_ancestors<A: Allocator>(mut self, alloc: &A) -> bool {
loop {
match self.fix_node_through_parent(alloc) {
Ok(Some(parent)) => self = parent.forget_type(),
Ok(None) => return true,
Err(_) => return false,
}
}
}
}
impl<K, V> Root<K, V> {
/// Removes empty levels on the top, but keeps an empty leaf if the entire tree is empty.
pub(crate) fn fix_top<A: Allocator>(&mut self, alloc: &A) {
while self.height() > 0 && self.len() == 0 {
self.pop_internal_level(alloc);
}
}
/// Stocks up or merge away any underfull nodes on the right border of the
/// tree. The other nodes, those that are not the root nor a rightmost edge,
/// must already have at least MIN_LEN elements.
pub(crate) fn fix_right_border<A: Allocator>(&mut self, alloc: &A) {
self.fix_top(alloc);
if self.len() > 0 {
self.borrow_mut()
.last_kv()
.fix_right_border_of_right_edge(alloc);
self.fix_top(alloc);
}
}
/// The symmetric clone of `fix_right_border`.
pub(crate) fn fix_left_border<A: Allocator>(&mut self, alloc: &A) {
self.fix_top(alloc);
if self.len() > 0 {
self.borrow_mut()
.first_kv()
.fix_left_border_of_left_edge(alloc);
self.fix_top(alloc);
}
}
/// Stocks up any underfull nodes on the right border of the tree.
/// The other nodes, those that are neither the root nor a rightmost edge,
/// must be prepared to have up to MIN_LEN elements stolen.
pub(crate) fn fix_right_border_of_plentiful(&mut self) {
let mut cur_node = self.borrow_mut();
while let Internal(internal) = cur_node.force() {
// Check if right-most child is underfull.
let mut last_kv = internal.last_kv().consider_for_balancing();
debug_assert!(last_kv.left_child_len() >= MIN_LEN * 2);
let right_child_len = last_kv.right_child_len();
if right_child_len < MIN_LEN {
// We need to steal.
last_kv.bulk_steal_left(MIN_LEN - right_child_len);
}
// Go further down.
cur_node = last_kv.into_right_child();
}
}
}
impl<'a, K: 'a, V: 'a> Handle<NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal>, marker::KV> {
fn fix_left_border_of_left_edge<A: Allocator>(mut self, alloc: &A) {
while let Internal(internal_kv) = self.force() {
self = internal_kv.fix_left_child(alloc).first_kv();
debug_assert!(self.reborrow().into_node().len() > MIN_LEN);
}
}
fn fix_right_border_of_right_edge<A: Allocator>(mut self, alloc: &A) {
while let Internal(internal_kv) = self.force() {
self = internal_kv.fix_right_child(alloc).last_kv();
debug_assert!(self.reborrow().into_node().len() > MIN_LEN);
}
}
}
impl<'a, K: 'a, V: 'a> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Internal>, marker::KV> {
/// Stocks up the left child, assuming the right child isn't underfull, and
/// provisions an extra element to allow merging its children in turn
/// without becoming underfull.
/// Returns the left child.
fn fix_left_child<A: Allocator>(
self,
alloc: &A,
) -> NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal> {
let mut internal_kv = self.consider_for_balancing();
let left_len = internal_kv.left_child_len();
debug_assert!(internal_kv.right_child_len() >= MIN_LEN);
if internal_kv.can_merge() {
internal_kv.merge_tracking_child(alloc)
} else {
// `MIN_LEN + 1` to avoid readjust if merge happens on the next level.
let count = (MIN_LEN + 1).saturating_sub(left_len);
if count > 0 {
internal_kv.bulk_steal_right(count);
}
internal_kv.into_left_child()
}
}
/// Stocks up the right child, assuming the left child isn't underfull, and
/// provisions an extra element to allow merging its children in turn
/// without becoming underfull.
/// Returns wherever the right child ended up.
fn fix_right_child<A: Allocator>(
self,
alloc: &A,
) -> NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal> {
let mut internal_kv = self.consider_for_balancing();
let right_len = internal_kv.right_child_len();
debug_assert!(internal_kv.left_child_len() >= MIN_LEN);
if internal_kv.can_merge() {
internal_kv.merge_tracking_child(alloc)
} else {
// `MIN_LEN + 1` to avoid readjust if merge happens on the next level.
let count = (MIN_LEN + 1).saturating_sub(right_len);
if count > 0 {
internal_kv.bulk_steal_left(count);
}
internal_kv.into_right_child()
}
}
}