bstr/
utf8.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
use core::{char, cmp, fmt, str};

use crate::{ascii, bstr::BStr, ext_slice::ByteSlice};

// The UTF-8 decoder provided here is based on the one presented here:
// https://bjoern.hoehrmann.de/utf-8/decoder/dfa/
//
// We *could* have done UTF-8 decoding by using a DFA generated by `\p{any}`
// using regex-automata that is roughly the same size. The real benefit of
// Hoehrmann's formulation is that the byte class mapping below is manually
// tailored such that each byte's class doubles as a shift to mask out the
// bits necessary for constructing the leading bits of each codepoint value
// from the initial byte.
//
// There are some minor differences between this implementation and Hoehrmann's
// formulation.
//
// Firstly, we make REJECT have state ID 0, since it makes the state table
// itself a little easier to read and is consistent with the notion that 0
// means "false" or "bad."
//
// Secondly, when doing bulk decoding, we add a SIMD accelerated ASCII fast
// path.
//
// Thirdly, we pre-multiply the state IDs to avoid a multiplication instruction
// in the core decoding loop. (Which is what regex-automata would do by
// default.)
//
// Fourthly, we split the byte class mapping and transition table into two
// arrays because it's clearer.
//
// It is unlikely that this is the fastest way to do UTF-8 decoding, however,
// it is fairly simple.

const ACCEPT: usize = 12;
const REJECT: usize = 0;

/// SAFETY: The decode below function relies on the correctness of these
/// equivalence classes.
#[rustfmt::skip]
const CLASSES: [u8; 256] = [
   0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
   0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
   0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
   0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
   1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,  9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
   7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,  7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
   8,8,2,2,2,2,2,2,2,2,2,2,2,2,2,2,  2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
  10,3,3,3,3,3,3,3,3,3,3,3,3,4,3,3, 11,6,6,6,5,8,8,8,8,8,8,8,8,8,8,8,
];

/// SAFETY: The decode below function relies on the correctness of this state
/// machine.
#[rustfmt::skip]
const STATES_FORWARD: &[u8] = &[
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  12, 0, 24, 36, 60, 96, 84, 0, 0, 0, 48, 72,
  0, 12, 0, 0, 0, 0, 0, 12, 0, 12, 0, 0,
  0, 24, 0, 0, 0, 0, 0, 24, 0, 24, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0,
  0, 24, 0, 0, 0, 0, 0, 0, 0, 24, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 36, 0, 36, 0, 0,
  0, 36, 0, 0, 0, 0, 0, 36, 0, 36, 0, 0,
  0, 36, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
];

/// An iterator over Unicode scalar values in a byte string.
///
/// When invalid UTF-8 byte sequences are found, they are substituted with the
/// Unicode replacement codepoint (`U+FFFD`) using the
/// ["maximal subpart" strategy](https://www.unicode.org/review/pr-121.html).
///
/// This iterator is created by the
/// [`chars`](trait.ByteSlice.html#method.chars) method provided by the
/// [`ByteSlice`](trait.ByteSlice.html) extension trait for `&[u8]`.
#[derive(Clone, Debug)]
pub struct Chars<'a> {
    bs: &'a [u8],
}

impl<'a> Chars<'a> {
    pub(crate) fn new(bs: &'a [u8]) -> Chars<'a> {
        Chars { bs }
    }

    /// View the underlying data as a subslice of the original data.
    ///
    /// The slice returned has the same lifetime as the original slice, and so
    /// the iterator can continue to be used while this exists.
    ///
    /// # Examples
    ///
    /// ```
    /// use bstr::ByteSlice;
    ///
    /// let mut chars = b"abc".chars();
    ///
    /// assert_eq!(b"abc", chars.as_bytes());
    /// chars.next();
    /// assert_eq!(b"bc", chars.as_bytes());
    /// chars.next();
    /// chars.next();
    /// assert_eq!(b"", chars.as_bytes());
    /// ```
    #[inline]
    pub fn as_bytes(&self) -> &'a [u8] {
        self.bs
    }
}

impl<'a> Iterator for Chars<'a> {
    type Item = char;

    #[inline]
    fn next(&mut self) -> Option<char> {
        let (ch, size) = decode_lossy(self.bs);
        if size == 0 {
            return None;
        }
        self.bs = &self.bs[size..];
        Some(ch)
    }
}

impl<'a> DoubleEndedIterator for Chars<'a> {
    #[inline]
    fn next_back(&mut self) -> Option<char> {
        let (ch, size) = decode_last_lossy(self.bs);
        if size == 0 {
            return None;
        }
        self.bs = &self.bs[..self.bs.len() - size];
        Some(ch)
    }
}

/// An iterator over Unicode scalar values in a byte string and their
/// byte index positions.
///
/// When invalid UTF-8 byte sequences are found, they are substituted with the
/// Unicode replacement codepoint (`U+FFFD`) using the
/// ["maximal subpart" strategy](https://www.unicode.org/review/pr-121.html).
///
/// Note that this is slightly different from the `CharIndices` iterator
/// provided by the standard library. Aside from working on possibly invalid
/// UTF-8, this iterator provides both the corresponding starting and ending
/// byte indices of each codepoint yielded. The ending position is necessary to
/// slice the original byte string when invalid UTF-8 bytes are converted into
/// a Unicode replacement codepoint, since a single replacement codepoint can
/// substitute anywhere from 1 to 3 invalid bytes (inclusive).
///
/// This iterator is created by the
/// [`char_indices`](trait.ByteSlice.html#method.char_indices) method provided
/// by the [`ByteSlice`](trait.ByteSlice.html) extension trait for `&[u8]`.
#[derive(Clone, Debug)]
pub struct CharIndices<'a> {
    bs: &'a [u8],
    forward_index: usize,
    reverse_index: usize,
}

impl<'a> CharIndices<'a> {
    pub(crate) fn new(bs: &'a [u8]) -> CharIndices<'a> {
        CharIndices { bs, forward_index: 0, reverse_index: bs.len() }
    }

    /// View the underlying data as a subslice of the original data.
    ///
    /// The slice returned has the same lifetime as the original slice, and so
    /// the iterator can continue to be used while this exists.
    ///
    /// # Examples
    ///
    /// ```
    /// use bstr::ByteSlice;
    ///
    /// let mut it = b"abc".char_indices();
    ///
    /// assert_eq!(b"abc", it.as_bytes());
    /// it.next();
    /// assert_eq!(b"bc", it.as_bytes());
    /// it.next();
    /// it.next();
    /// assert_eq!(b"", it.as_bytes());
    /// ```
    #[inline]
    pub fn as_bytes(&self) -> &'a [u8] {
        self.bs
    }
}

impl<'a> Iterator for CharIndices<'a> {
    type Item = (usize, usize, char);

    #[inline]
    fn next(&mut self) -> Option<(usize, usize, char)> {
        let index = self.forward_index;
        let (ch, size) = decode_lossy(self.bs);
        if size == 0 {
            return None;
        }
        self.bs = &self.bs[size..];
        self.forward_index += size;
        Some((index, index + size, ch))
    }
}

impl<'a> DoubleEndedIterator for CharIndices<'a> {
    #[inline]
    fn next_back(&mut self) -> Option<(usize, usize, char)> {
        let (ch, size) = decode_last_lossy(self.bs);
        if size == 0 {
            return None;
        }
        self.bs = &self.bs[..self.bs.len() - size];
        self.reverse_index -= size;
        Some((self.reverse_index, self.reverse_index + size, ch))
    }
}

impl<'a> ::core::iter::FusedIterator for CharIndices<'a> {}

/// An iterator over chunks of valid UTF-8 in a byte slice.
///
/// See [`utf8_chunks`](trait.ByteSlice.html#method.utf8_chunks).
#[derive(Clone, Debug)]
pub struct Utf8Chunks<'a> {
    pub(super) bytes: &'a [u8],
}

/// A chunk of valid UTF-8, possibly followed by invalid UTF-8 bytes.
///
/// This is yielded by the
/// [`Utf8Chunks`](struct.Utf8Chunks.html)
/// iterator, which can be created via the
/// [`ByteSlice::utf8_chunks`](trait.ByteSlice.html#method.utf8_chunks)
/// method.
///
/// The `'a` lifetime parameter corresponds to the lifetime of the bytes that
/// are being iterated over.
#[cfg_attr(test, derive(Debug, PartialEq))]
pub struct Utf8Chunk<'a> {
    /// A valid UTF-8 piece, at the start, end, or between invalid UTF-8 bytes.
    ///
    /// This is empty between adjacent invalid UTF-8 byte sequences.
    valid: &'a str,
    /// A sequence of invalid UTF-8 bytes.
    ///
    /// Can only be empty in the last chunk.
    ///
    /// Should be replaced by a single unicode replacement character, if not
    /// empty.
    invalid: &'a BStr,
    /// Indicates whether the invalid sequence could've been valid if there
    /// were more bytes.
    ///
    /// Can only be true in the last chunk.
    incomplete: bool,
}

impl<'a> Utf8Chunk<'a> {
    /// Returns the (possibly empty) valid UTF-8 bytes in this chunk.
    ///
    /// This may be empty if there are consecutive sequences of invalid UTF-8
    /// bytes.
    #[inline]
    pub fn valid(&self) -> &'a str {
        self.valid
    }

    /// Returns the (possibly empty) invalid UTF-8 bytes in this chunk that
    /// immediately follow the valid UTF-8 bytes in this chunk.
    ///
    /// This is only empty when this chunk corresponds to the last chunk in
    /// the original bytes.
    ///
    /// The maximum length of this slice is 3. That is, invalid UTF-8 byte
    /// sequences greater than 1 always correspond to a valid _prefix_ of
    /// a valid UTF-8 encoded codepoint. This corresponds to the "substitution
    /// of maximal subparts" strategy that is described in more detail in the
    /// docs for the
    /// [`ByteSlice::to_str_lossy`](trait.ByteSlice.html#method.to_str_lossy)
    /// method.
    #[inline]
    pub fn invalid(&self) -> &'a [u8] {
        self.invalid.as_bytes()
    }

    /// Returns whether the invalid sequence might still become valid if more
    /// bytes are added.
    ///
    /// Returns true if the end of the input was reached unexpectedly,
    /// without encountering an unexpected byte.
    ///
    /// This can only be the case for the last chunk.
    #[inline]
    pub fn incomplete(&self) -> bool {
        self.incomplete
    }
}

impl<'a> Iterator for Utf8Chunks<'a> {
    type Item = Utf8Chunk<'a>;

    #[inline]
    fn next(&mut self) -> Option<Utf8Chunk<'a>> {
        if self.bytes.is_empty() {
            return None;
        }
        match validate(self.bytes) {
            Ok(()) => {
                let valid = self.bytes;
                self.bytes = &[];
                Some(Utf8Chunk {
                    // SAFETY: This is safe because of the guarantees provided
                    // by utf8::validate.
                    valid: unsafe { str::from_utf8_unchecked(valid) },
                    invalid: [].as_bstr(),
                    incomplete: false,
                })
            }
            Err(e) => {
                let (valid, rest) = self.bytes.split_at(e.valid_up_to());
                // SAFETY: This is safe because of the guarantees provided by
                // utf8::validate.
                let valid = unsafe { str::from_utf8_unchecked(valid) };
                let (invalid_len, incomplete) = match e.error_len() {
                    Some(n) => (n, false),
                    None => (rest.len(), true),
                };
                let (invalid, rest) = rest.split_at(invalid_len);
                self.bytes = rest;
                Some(Utf8Chunk {
                    valid,
                    invalid: invalid.as_bstr(),
                    incomplete,
                })
            }
        }
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        if self.bytes.is_empty() {
            (0, Some(0))
        } else {
            (1, Some(self.bytes.len()))
        }
    }
}

impl<'a> ::core::iter::FusedIterator for Utf8Chunks<'a> {}

/// An error that occurs when UTF-8 decoding fails.
///
/// This error occurs when attempting to convert a non-UTF-8 byte
/// string to a Rust string that must be valid UTF-8. For example,
/// [`to_str`](trait.ByteSlice.html#method.to_str) is one such method.
///
/// # Example
///
/// This example shows what happens when a given byte sequence is invalid,
/// but ends with a sequence that is a possible prefix of valid UTF-8.
///
/// ```
/// use bstr::{B, ByteSlice};
///
/// let s = B(b"foobar\xF1\x80\x80");
/// let err = s.to_str().unwrap_err();
/// assert_eq!(err.valid_up_to(), 6);
/// assert_eq!(err.error_len(), None);
/// ```
///
/// This example shows what happens when a given byte sequence contains
/// invalid UTF-8.
///
/// ```
/// use bstr::ByteSlice;
///
/// let s = b"foobar\xF1\x80\x80quux";
/// let err = s.to_str().unwrap_err();
/// assert_eq!(err.valid_up_to(), 6);
/// // The error length reports the maximum number of bytes that correspond to
/// // a valid prefix of a UTF-8 encoded codepoint.
/// assert_eq!(err.error_len(), Some(3));
///
/// // In contrast to the above which contains a single invalid prefix,
/// // consider the case of multiple individual bytes that are never valid
/// // prefixes. Note how the value of error_len changes!
/// let s = b"foobar\xFF\xFFquux";
/// let err = s.to_str().unwrap_err();
/// assert_eq!(err.valid_up_to(), 6);
/// assert_eq!(err.error_len(), Some(1));
///
/// // The fact that it's an invalid prefix does not change error_len even
/// // when it immediately precedes the end of the string.
/// let s = b"foobar\xFF";
/// let err = s.to_str().unwrap_err();
/// assert_eq!(err.valid_up_to(), 6);
/// assert_eq!(err.error_len(), Some(1));
/// ```
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct Utf8Error {
    valid_up_to: usize,
    error_len: Option<usize>,
}

impl Utf8Error {
    /// Returns the byte index of the position immediately following the last
    /// valid UTF-8 byte.
    ///
    /// # Example
    ///
    /// This examples shows how `valid_up_to` can be used to retrieve a
    /// possibly empty prefix that is guaranteed to be valid UTF-8:
    ///
    /// ```
    /// use bstr::ByteSlice;
    ///
    /// let s = b"foobar\xF1\x80\x80quux";
    /// let err = s.to_str().unwrap_err();
    ///
    /// // This is guaranteed to never panic.
    /// let string = s[..err.valid_up_to()].to_str().unwrap();
    /// assert_eq!(string, "foobar");
    /// ```
    #[inline]
    pub fn valid_up_to(&self) -> usize {
        self.valid_up_to
    }

    /// Returns the total number of invalid UTF-8 bytes immediately following
    /// the position returned by `valid_up_to`. This value is always at least
    /// `1`, but can be up to `3` if bytes form a valid prefix of some UTF-8
    /// encoded codepoint.
    ///
    /// If the end of the original input was found before a valid UTF-8 encoded
    /// codepoint could be completed, then this returns `None`. This is useful
    /// when processing streams, where a `None` value signals that more input
    /// might be needed.
    #[inline]
    pub fn error_len(&self) -> Option<usize> {
        self.error_len
    }
}

#[cfg(feature = "std")]
impl std::error::Error for Utf8Error {
    fn description(&self) -> &str {
        "invalid UTF-8"
    }
}

impl fmt::Display for Utf8Error {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "invalid UTF-8 found at byte offset {}", self.valid_up_to)
    }
}

/// Returns OK if and only if the given slice is completely valid UTF-8.
///
/// If the slice isn't valid UTF-8, then an error is returned that explains
/// the first location at which invalid UTF-8 was detected.
pub fn validate(slice: &[u8]) -> Result<(), Utf8Error> {
    // The fast path for validating UTF-8. It steps through a UTF-8 automaton
    // and uses a SIMD accelerated ASCII fast path on x86_64. If an error is
    // detected, it backs up and runs the slower version of the UTF-8 automaton
    // to determine correct error information.
    fn fast(slice: &[u8]) -> Result<(), Utf8Error> {
        let mut state = ACCEPT;
        let mut i = 0;

        while i < slice.len() {
            let b = slice[i];

            // ASCII fast path. If we see two consecutive ASCII bytes, then try
            // to validate as much ASCII as possible very quickly.
            if state == ACCEPT
                && b <= 0x7F
                && slice.get(i + 1).map_or(false, |&b| b <= 0x7F)
            {
                i += ascii::first_non_ascii_byte(&slice[i..]);
                continue;
            }

            state = step(state, b);
            if state == REJECT {
                return Err(find_valid_up_to(slice, i));
            }
            i += 1;
        }
        if state != ACCEPT {
            Err(find_valid_up_to(slice, slice.len()))
        } else {
            Ok(())
        }
    }

    // Given the first position at which a UTF-8 sequence was determined to be
    // invalid, return an error that correctly reports the position at which
    // the last complete UTF-8 sequence ends.
    #[inline(never)]
    fn find_valid_up_to(slice: &[u8], rejected_at: usize) -> Utf8Error {
        // In order to find the last valid byte, we need to back up an amount
        // that guarantees every preceding byte is part of a valid UTF-8
        // code unit sequence. To do this, we simply locate the last leading
        // byte that occurs before rejected_at.
        let mut backup = rejected_at.saturating_sub(1);
        while backup > 0 && !is_leading_or_invalid_utf8_byte(slice[backup]) {
            backup -= 1;
        }
        let upto = cmp::min(slice.len(), rejected_at.saturating_add(1));
        let mut err = slow(&slice[backup..upto]).unwrap_err();
        err.valid_up_to += backup;
        err
    }

    // Like top-level UTF-8 decoding, except it correctly reports a UTF-8 error
    // when an invalid sequence is found. This is split out from validate so
    // that the fast path doesn't need to keep track of the position of the
    // last valid UTF-8 byte. In particular, tracking this requires checking
    // for an ACCEPT state on each byte, which degrades throughput pretty
    // badly.
    fn slow(slice: &[u8]) -> Result<(), Utf8Error> {
        let mut state = ACCEPT;
        let mut valid_up_to = 0;
        for (i, &b) in slice.iter().enumerate() {
            state = step(state, b);
            if state == ACCEPT {
                valid_up_to = i + 1;
            } else if state == REJECT {
                // Our error length must always be at least 1.
                let error_len = Some(cmp::max(1, i - valid_up_to));
                return Err(Utf8Error { valid_up_to, error_len });
            }
        }
        if state != ACCEPT {
            Err(Utf8Error { valid_up_to, error_len: None })
        } else {
            Ok(())
        }
    }

    // Advance to the next state given the current state and current byte.
    fn step(state: usize, b: u8) -> usize {
        let class = CLASSES[b as usize];
        // SAFETY: This is safe because 'class' is always <=11 and 'state' is
        // always <=96. Therefore, the maximal index is 96+11 = 107, where
        // STATES_FORWARD.len() = 108 such that every index is guaranteed to be
        // valid by construction of the state machine and the byte equivalence
        // classes.
        unsafe {
            *STATES_FORWARD.get_unchecked(state + class as usize) as usize
        }
    }

    fast(slice)
}

/// UTF-8 decode a single Unicode scalar value from the beginning of a slice.
///
/// When successful, the corresponding Unicode scalar value is returned along
/// with the number of bytes it was encoded with. The number of bytes consumed
/// for a successful decode is always between 1 and 4, inclusive.
///
/// When unsuccessful, `None` is returned along with the number of bytes that
/// make up a maximal prefix of a valid UTF-8 code unit sequence. In this case,
/// the number of bytes consumed is always between 0 and 3, inclusive, where
/// 0 is only returned when `slice` is empty.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use bstr::decode_utf8;
///
/// // Decoding a valid codepoint.
/// let (ch, size) = decode_utf8(b"\xE2\x98\x83");
/// assert_eq!(Some('☃'), ch);
/// assert_eq!(3, size);
///
/// // Decoding an incomplete codepoint.
/// let (ch, size) = decode_utf8(b"\xE2\x98");
/// assert_eq!(None, ch);
/// assert_eq!(2, size);
/// ```
///
/// This example shows how to iterate over all codepoints in UTF-8 encoded
/// bytes, while replacing invalid UTF-8 sequences with the replacement
/// codepoint:
///
/// ```
/// use bstr::{B, decode_utf8};
///
/// let mut bytes = B(b"\xE2\x98\x83\xFF\xF0\x9D\x9E\x83\xE2\x98\x61");
/// let mut chars = vec![];
/// while !bytes.is_empty() {
///     let (ch, size) = decode_utf8(bytes);
///     bytes = &bytes[size..];
///     chars.push(ch.unwrap_or('\u{FFFD}'));
/// }
/// assert_eq!(vec!['☃', '\u{FFFD}', '𝞃', '\u{FFFD}', 'a'], chars);
/// ```
#[inline]
pub fn decode<B: AsRef<[u8]>>(slice: B) -> (Option<char>, usize) {
    let slice = slice.as_ref();
    match slice.first() {
        None => return (None, 0),
        Some(&b) if b <= 0x7F => return (Some(b as char), 1),
        _ => {}
    }

    let (mut state, mut cp, mut i) = (ACCEPT, 0, 0);
    while i < slice.len() {
        decode_step(&mut state, &mut cp, slice[i]);
        i += 1;

        if state == ACCEPT {
            // SAFETY: This is safe because `decode_step` guarantees that
            // `cp` is a valid Unicode scalar value in an ACCEPT state.
            let ch = unsafe { char::from_u32_unchecked(cp) };
            return (Some(ch), i);
        } else if state == REJECT {
            // At this point, we always want to advance at least one byte.
            return (None, cmp::max(1, i.saturating_sub(1)));
        }
    }
    (None, i)
}

/// Lossily UTF-8 decode a single Unicode scalar value from the beginning of a
/// slice.
///
/// When successful, the corresponding Unicode scalar value is returned along
/// with the number of bytes it was encoded with. The number of bytes consumed
/// for a successful decode is always between 1 and 4, inclusive.
///
/// When unsuccessful, the Unicode replacement codepoint (`U+FFFD`) is returned
/// along with the number of bytes that make up a maximal prefix of a valid
/// UTF-8 code unit sequence. In this case, the number of bytes consumed is
/// always between 0 and 3, inclusive, where 0 is only returned when `slice` is
/// empty.
///
/// # Examples
///
/// Basic usage:
///
/// ```ignore
/// use bstr::decode_utf8_lossy;
///
/// // Decoding a valid codepoint.
/// let (ch, size) = decode_utf8_lossy(b"\xE2\x98\x83");
/// assert_eq!('☃', ch);
/// assert_eq!(3, size);
///
/// // Decoding an incomplete codepoint.
/// let (ch, size) = decode_utf8_lossy(b"\xE2\x98");
/// assert_eq!('\u{FFFD}', ch);
/// assert_eq!(2, size);
/// ```
///
/// This example shows how to iterate over all codepoints in UTF-8 encoded
/// bytes, while replacing invalid UTF-8 sequences with the replacement
/// codepoint:
///
/// ```ignore
/// use bstr::{B, decode_utf8_lossy};
///
/// let mut bytes = B(b"\xE2\x98\x83\xFF\xF0\x9D\x9E\x83\xE2\x98\x61");
/// let mut chars = vec![];
/// while !bytes.is_empty() {
///     let (ch, size) = decode_utf8_lossy(bytes);
///     bytes = &bytes[size..];
///     chars.push(ch);
/// }
/// assert_eq!(vec!['☃', '\u{FFFD}', '𝞃', '\u{FFFD}', 'a'], chars);
/// ```
#[inline]
pub fn decode_lossy<B: AsRef<[u8]>>(slice: B) -> (char, usize) {
    match decode(slice) {
        (Some(ch), size) => (ch, size),
        (None, size) => ('\u{FFFD}', size),
    }
}

/// UTF-8 decode a single Unicode scalar value from the end of a slice.
///
/// When successful, the corresponding Unicode scalar value is returned along
/// with the number of bytes it was encoded with. The number of bytes consumed
/// for a successful decode is always between 1 and 4, inclusive.
///
/// When unsuccessful, `None` is returned along with the number of bytes that
/// make up a maximal prefix of a valid UTF-8 code unit sequence. In this case,
/// the number of bytes consumed is always between 0 and 3, inclusive, where
/// 0 is only returned when `slice` is empty.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use bstr::decode_last_utf8;
///
/// // Decoding a valid codepoint.
/// let (ch, size) = decode_last_utf8(b"\xE2\x98\x83");
/// assert_eq!(Some('☃'), ch);
/// assert_eq!(3, size);
///
/// // Decoding an incomplete codepoint.
/// let (ch, size) = decode_last_utf8(b"\xE2\x98");
/// assert_eq!(None, ch);
/// assert_eq!(2, size);
/// ```
///
/// This example shows how to iterate over all codepoints in UTF-8 encoded
/// bytes in reverse, while replacing invalid UTF-8 sequences with the
/// replacement codepoint:
///
/// ```
/// use bstr::{B, decode_last_utf8};
///
/// let mut bytes = B(b"\xE2\x98\x83\xFF\xF0\x9D\x9E\x83\xE2\x98\x61");
/// let mut chars = vec![];
/// while !bytes.is_empty() {
///     let (ch, size) = decode_last_utf8(bytes);
///     bytes = &bytes[..bytes.len()-size];
///     chars.push(ch.unwrap_or('\u{FFFD}'));
/// }
/// assert_eq!(vec!['a', '\u{FFFD}', '𝞃', '\u{FFFD}', '☃'], chars);
/// ```
#[inline]
pub fn decode_last<B: AsRef<[u8]>>(slice: B) -> (Option<char>, usize) {
    // TODO: We could implement this by reversing the UTF-8 automaton, but for
    // now, we do it the slow way by using the forward automaton.

    let slice = slice.as_ref();
    if slice.is_empty() {
        return (None, 0);
    }
    let mut start = slice.len() - 1;
    let limit = slice.len().saturating_sub(4);
    while start > limit && !is_leading_or_invalid_utf8_byte(slice[start]) {
        start -= 1;
    }
    let (ch, size) = decode(&slice[start..]);
    // If we didn't consume all of the bytes, then that means there's at least
    // one stray byte that never occurs in a valid code unit prefix, so we can
    // advance by one byte.
    if start + size != slice.len() {
        (None, 1)
    } else {
        (ch, size)
    }
}

/// Lossily UTF-8 decode a single Unicode scalar value from the end of a slice.
///
/// When successful, the corresponding Unicode scalar value is returned along
/// with the number of bytes it was encoded with. The number of bytes consumed
/// for a successful decode is always between 1 and 4, inclusive.
///
/// When unsuccessful, the Unicode replacement codepoint (`U+FFFD`) is returned
/// along with the number of bytes that make up a maximal prefix of a valid
/// UTF-8 code unit sequence. In this case, the number of bytes consumed is
/// always between 0 and 3, inclusive, where 0 is only returned when `slice` is
/// empty.
///
/// # Examples
///
/// Basic usage:
///
/// ```ignore
/// use bstr::decode_last_utf8_lossy;
///
/// // Decoding a valid codepoint.
/// let (ch, size) = decode_last_utf8_lossy(b"\xE2\x98\x83");
/// assert_eq!('☃', ch);
/// assert_eq!(3, size);
///
/// // Decoding an incomplete codepoint.
/// let (ch, size) = decode_last_utf8_lossy(b"\xE2\x98");
/// assert_eq!('\u{FFFD}', ch);
/// assert_eq!(2, size);
/// ```
///
/// This example shows how to iterate over all codepoints in UTF-8 encoded
/// bytes in reverse, while replacing invalid UTF-8 sequences with the
/// replacement codepoint:
///
/// ```ignore
/// use bstr::decode_last_utf8_lossy;
///
/// let mut bytes = B(b"\xE2\x98\x83\xFF\xF0\x9D\x9E\x83\xE2\x98\x61");
/// let mut chars = vec![];
/// while !bytes.is_empty() {
///     let (ch, size) = decode_last_utf8_lossy(bytes);
///     bytes = &bytes[..bytes.len()-size];
///     chars.push(ch);
/// }
/// assert_eq!(vec!['a', '\u{FFFD}', '𝞃', '\u{FFFD}', '☃'], chars);
/// ```
#[inline]
pub fn decode_last_lossy<B: AsRef<[u8]>>(slice: B) -> (char, usize) {
    match decode_last(slice) {
        (Some(ch), size) => (ch, size),
        (None, size) => ('\u{FFFD}', size),
    }
}

/// SAFETY: The decode function relies on state being equal to ACCEPT only if
/// cp is a valid Unicode scalar value.
#[inline]
pub fn decode_step(state: &mut usize, cp: &mut u32, b: u8) {
    let class = CLASSES[b as usize];
    let b = u32::from(b);
    if *state == ACCEPT {
        *cp = (0xFF >> class) & b;
    } else {
        *cp = (b & 0b0011_1111) | (*cp << 6);
    }
    *state = STATES_FORWARD[*state + class as usize] as usize;
}

/// Returns true if and only if the given byte is either a valid leading UTF-8
/// byte, or is otherwise an invalid byte that can never appear anywhere in a
/// valid UTF-8 sequence.
fn is_leading_or_invalid_utf8_byte(b: u8) -> bool {
    // In the ASCII case, the most significant bit is never set. The leading
    // byte of a 2/3/4-byte sequence always has the top two most significant
    // bits set. For bytes that can never appear anywhere in valid UTF-8, this
    // also returns true, since every such byte has its two most significant
    // bits set:
    //
    //     \xC0 :: 11000000
    //     \xC1 :: 11000001
    //     \xF5 :: 11110101
    //     \xF6 :: 11110110
    //     \xF7 :: 11110111
    //     \xF8 :: 11111000
    //     \xF9 :: 11111001
    //     \xFA :: 11111010
    //     \xFB :: 11111011
    //     \xFC :: 11111100
    //     \xFD :: 11111101
    //     \xFE :: 11111110
    //     \xFF :: 11111111
    (b & 0b1100_0000) != 0b1000_0000
}

#[cfg(all(test, feature = "std"))]
mod tests {
    use core::char;

    use alloc::{string::String, vec, vec::Vec};

    use crate::{
        ext_slice::{ByteSlice, B},
        tests::LOSSY_TESTS,
        utf8::{self, Utf8Error},
    };

    fn utf8e(valid_up_to: usize) -> Utf8Error {
        Utf8Error { valid_up_to, error_len: None }
    }

    fn utf8e2(valid_up_to: usize, error_len: usize) -> Utf8Error {
        Utf8Error { valid_up_to, error_len: Some(error_len) }
    }

    #[test]
    #[cfg(not(miri))]
    fn validate_all_codepoints() {
        for i in 0..(0x10FFFF + 1) {
            let cp = match char::from_u32(i) {
                None => continue,
                Some(cp) => cp,
            };
            let mut buf = [0; 4];
            let s = cp.encode_utf8(&mut buf);
            assert_eq!(Ok(()), utf8::validate(s.as_bytes()));
        }
    }

    #[test]
    fn validate_multiple_codepoints() {
        assert_eq!(Ok(()), utf8::validate(b"abc"));
        assert_eq!(Ok(()), utf8::validate(b"a\xE2\x98\x83a"));
        assert_eq!(Ok(()), utf8::validate(b"a\xF0\x9D\x9C\xB7a"));
        assert_eq!(Ok(()), utf8::validate(b"\xE2\x98\x83\xF0\x9D\x9C\xB7",));
        assert_eq!(
            Ok(()),
            utf8::validate(b"a\xE2\x98\x83a\xF0\x9D\x9C\xB7a",)
        );
        assert_eq!(
            Ok(()),
            utf8::validate(b"\xEF\xBF\xBD\xE2\x98\x83\xEF\xBF\xBD",)
        );
    }

    #[test]
    fn validate_errors() {
        // single invalid byte
        assert_eq!(Err(utf8e2(0, 1)), utf8::validate(b"\xFF"));
        // single invalid byte after ASCII
        assert_eq!(Err(utf8e2(1, 1)), utf8::validate(b"a\xFF"));
        // single invalid byte after 2 byte sequence
        assert_eq!(Err(utf8e2(2, 1)), utf8::validate(b"\xCE\xB2\xFF"));
        // single invalid byte after 3 byte sequence
        assert_eq!(Err(utf8e2(3, 1)), utf8::validate(b"\xE2\x98\x83\xFF"));
        // single invalid byte after 4 byte sequence
        assert_eq!(Err(utf8e2(4, 1)), utf8::validate(b"\xF0\x9D\x9D\xB1\xFF"));

        // An invalid 2-byte sequence with a valid 1-byte prefix.
        assert_eq!(Err(utf8e2(0, 1)), utf8::validate(b"\xCE\xF0"));
        // An invalid 3-byte sequence with a valid 2-byte prefix.
        assert_eq!(Err(utf8e2(0, 2)), utf8::validate(b"\xE2\x98\xF0"));
        // An invalid 4-byte sequence with a valid 3-byte prefix.
        assert_eq!(Err(utf8e2(0, 3)), utf8::validate(b"\xF0\x9D\x9D\xF0"));

        // An overlong sequence. Should be \xE2\x82\xAC, but we encode the
        // same codepoint value in 4 bytes. This not only tests that we reject
        // overlong sequences, but that we get valid_up_to correct.
        assert_eq!(Err(utf8e2(0, 1)), utf8::validate(b"\xF0\x82\x82\xAC"));
        assert_eq!(Err(utf8e2(1, 1)), utf8::validate(b"a\xF0\x82\x82\xAC"));
        assert_eq!(
            Err(utf8e2(3, 1)),
            utf8::validate(b"\xE2\x98\x83\xF0\x82\x82\xAC",)
        );

        // Check that encoding a surrogate codepoint using the UTF-8 scheme
        // fails validation.
        assert_eq!(Err(utf8e2(0, 1)), utf8::validate(b"\xED\xA0\x80"));
        assert_eq!(Err(utf8e2(1, 1)), utf8::validate(b"a\xED\xA0\x80"));
        assert_eq!(
            Err(utf8e2(3, 1)),
            utf8::validate(b"\xE2\x98\x83\xED\xA0\x80",)
        );

        // Check that an incomplete 2-byte sequence fails.
        assert_eq!(Err(utf8e2(0, 1)), utf8::validate(b"\xCEa"));
        assert_eq!(Err(utf8e2(1, 1)), utf8::validate(b"a\xCEa"));
        assert_eq!(
            Err(utf8e2(3, 1)),
            utf8::validate(b"\xE2\x98\x83\xCE\xE2\x98\x83",)
        );
        // Check that an incomplete 3-byte sequence fails.
        assert_eq!(Err(utf8e2(0, 2)), utf8::validate(b"\xE2\x98a"));
        assert_eq!(Err(utf8e2(1, 2)), utf8::validate(b"a\xE2\x98a"));
        assert_eq!(
            Err(utf8e2(3, 2)),
            utf8::validate(b"\xE2\x98\x83\xE2\x98\xE2\x98\x83",)
        );
        // Check that an incomplete 4-byte sequence fails.
        assert_eq!(Err(utf8e2(0, 3)), utf8::validate(b"\xF0\x9D\x9Ca"));
        assert_eq!(Err(utf8e2(1, 3)), utf8::validate(b"a\xF0\x9D\x9Ca"));
        assert_eq!(
            Err(utf8e2(4, 3)),
            utf8::validate(b"\xF0\x9D\x9C\xB1\xF0\x9D\x9C\xE2\x98\x83",)
        );
        assert_eq!(
            Err(utf8e2(6, 3)),
            utf8::validate(b"foobar\xF1\x80\x80quux",)
        );

        // Check that an incomplete (EOF) 2-byte sequence fails.
        assert_eq!(Err(utf8e(0)), utf8::validate(b"\xCE"));
        assert_eq!(Err(utf8e(1)), utf8::validate(b"a\xCE"));
        assert_eq!(Err(utf8e(3)), utf8::validate(b"\xE2\x98\x83\xCE"));
        // Check that an incomplete (EOF) 3-byte sequence fails.
        assert_eq!(Err(utf8e(0)), utf8::validate(b"\xE2\x98"));
        assert_eq!(Err(utf8e(1)), utf8::validate(b"a\xE2\x98"));
        assert_eq!(Err(utf8e(3)), utf8::validate(b"\xE2\x98\x83\xE2\x98"));
        // Check that an incomplete (EOF) 4-byte sequence fails.
        assert_eq!(Err(utf8e(0)), utf8::validate(b"\xF0\x9D\x9C"));
        assert_eq!(Err(utf8e(1)), utf8::validate(b"a\xF0\x9D\x9C"));
        assert_eq!(
            Err(utf8e(4)),
            utf8::validate(b"\xF0\x9D\x9C\xB1\xF0\x9D\x9C",)
        );

        // Test that we errors correct even after long valid sequences. This
        // checks that our "backup" logic for detecting errors is correct.
        assert_eq!(
            Err(utf8e2(8, 1)),
            utf8::validate(b"\xe2\x98\x83\xce\xb2\xe3\x83\x84\xFF",)
        );
    }

    #[test]
    fn decode_valid() {
        fn d(mut s: &str) -> Vec<char> {
            let mut chars = vec![];
            while !s.is_empty() {
                let (ch, size) = utf8::decode(s.as_bytes());
                s = &s[size..];
                chars.push(ch.unwrap());
            }
            chars
        }

        assert_eq!(vec!['☃'], d("☃"));
        assert_eq!(vec!['☃', '☃'], d("☃☃"));
        assert_eq!(vec!['α', 'β', 'γ', 'δ', 'ε'], d("αβγδε"));
        assert_eq!(vec!['☃', '⛄', '⛇'], d("☃⛄⛇"));
        assert_eq!(vec!['𝗮', '𝗯', '𝗰', '𝗱', '𝗲'], d("𝗮𝗯𝗰𝗱𝗲"));
    }

    #[test]
    fn decode_invalid() {
        let (ch, size) = utf8::decode(b"");
        assert_eq!(None, ch);
        assert_eq!(0, size);

        let (ch, size) = utf8::decode(b"\xFF");
        assert_eq!(None, ch);
        assert_eq!(1, size);

        let (ch, size) = utf8::decode(b"\xCE\xF0");
        assert_eq!(None, ch);
        assert_eq!(1, size);

        let (ch, size) = utf8::decode(b"\xE2\x98\xF0");
        assert_eq!(None, ch);
        assert_eq!(2, size);

        let (ch, size) = utf8::decode(b"\xF0\x9D\x9D");
        assert_eq!(None, ch);
        assert_eq!(3, size);

        let (ch, size) = utf8::decode(b"\xF0\x9D\x9D\xF0");
        assert_eq!(None, ch);
        assert_eq!(3, size);

        let (ch, size) = utf8::decode(b"\xF0\x82\x82\xAC");
        assert_eq!(None, ch);
        assert_eq!(1, size);

        let (ch, size) = utf8::decode(b"\xED\xA0\x80");
        assert_eq!(None, ch);
        assert_eq!(1, size);

        let (ch, size) = utf8::decode(b"\xCEa");
        assert_eq!(None, ch);
        assert_eq!(1, size);

        let (ch, size) = utf8::decode(b"\xE2\x98a");
        assert_eq!(None, ch);
        assert_eq!(2, size);

        let (ch, size) = utf8::decode(b"\xF0\x9D\x9Ca");
        assert_eq!(None, ch);
        assert_eq!(3, size);
    }

    #[test]
    fn decode_lossy() {
        let (ch, size) = utf8::decode_lossy(b"");
        assert_eq!('\u{FFFD}', ch);
        assert_eq!(0, size);

        let (ch, size) = utf8::decode_lossy(b"\xFF");
        assert_eq!('\u{FFFD}', ch);
        assert_eq!(1, size);

        let (ch, size) = utf8::decode_lossy(b"\xCE\xF0");
        assert_eq!('\u{FFFD}', ch);
        assert_eq!(1, size);

        let (ch, size) = utf8::decode_lossy(b"\xE2\x98\xF0");
        assert_eq!('\u{FFFD}', ch);
        assert_eq!(2, size);

        let (ch, size) = utf8::decode_lossy(b"\xF0\x9D\x9D\xF0");
        assert_eq!('\u{FFFD}', ch);
        assert_eq!(3, size);

        let (ch, size) = utf8::decode_lossy(b"\xF0\x82\x82\xAC");
        assert_eq!('\u{FFFD}', ch);
        assert_eq!(1, size);

        let (ch, size) = utf8::decode_lossy(b"\xED\xA0\x80");
        assert_eq!('\u{FFFD}', ch);
        assert_eq!(1, size);

        let (ch, size) = utf8::decode_lossy(b"\xCEa");
        assert_eq!('\u{FFFD}', ch);
        assert_eq!(1, size);

        let (ch, size) = utf8::decode_lossy(b"\xE2\x98a");
        assert_eq!('\u{FFFD}', ch);
        assert_eq!(2, size);

        let (ch, size) = utf8::decode_lossy(b"\xF0\x9D\x9Ca");
        assert_eq!('\u{FFFD}', ch);
        assert_eq!(3, size);
    }

    #[test]
    fn decode_last_valid() {
        fn d(mut s: &str) -> Vec<char> {
            let mut chars = vec![];
            while !s.is_empty() {
                let (ch, size) = utf8::decode_last(s.as_bytes());
                s = &s[..s.len() - size];
                chars.push(ch.unwrap());
            }
            chars
        }

        assert_eq!(vec!['☃'], d("☃"));
        assert_eq!(vec!['☃', '☃'], d("☃☃"));
        assert_eq!(vec!['ε', 'δ', 'γ', 'β', 'α'], d("αβγδε"));
        assert_eq!(vec!['⛇', '⛄', '☃'], d("☃⛄⛇"));
        assert_eq!(vec!['𝗲', '𝗱', '𝗰', '𝗯', '𝗮'], d("𝗮𝗯𝗰𝗱𝗲"));
    }

    #[test]
    fn decode_last_invalid() {
        let (ch, size) = utf8::decode_last(b"");
        assert_eq!(None, ch);
        assert_eq!(0, size);

        let (ch, size) = utf8::decode_last(b"\xFF");
        assert_eq!(None, ch);
        assert_eq!(1, size);

        let (ch, size) = utf8::decode_last(b"\xCE\xF0");
        assert_eq!(None, ch);
        assert_eq!(1, size);

        let (ch, size) = utf8::decode_last(b"\xCE");
        assert_eq!(None, ch);
        assert_eq!(1, size);

        let (ch, size) = utf8::decode_last(b"\xE2\x98\xF0");
        assert_eq!(None, ch);
        assert_eq!(1, size);

        let (ch, size) = utf8::decode_last(b"\xE2\x98");
        assert_eq!(None, ch);
        assert_eq!(2, size);

        let (ch, size) = utf8::decode_last(b"\xF0\x9D\x9D\xF0");
        assert_eq!(None, ch);
        assert_eq!(1, size);

        let (ch, size) = utf8::decode_last(b"\xF0\x9D\x9D");
        assert_eq!(None, ch);
        assert_eq!(3, size);

        let (ch, size) = utf8::decode_last(b"\xF0\x82\x82\xAC");
        assert_eq!(None, ch);
        assert_eq!(1, size);

        let (ch, size) = utf8::decode_last(b"\xED\xA0\x80");
        assert_eq!(None, ch);
        assert_eq!(1, size);

        let (ch, size) = utf8::decode_last(b"\xED\xA0");
        assert_eq!(None, ch);
        assert_eq!(1, size);

        let (ch, size) = utf8::decode_last(b"\xED");
        assert_eq!(None, ch);
        assert_eq!(1, size);

        let (ch, size) = utf8::decode_last(b"a\xCE");
        assert_eq!(None, ch);
        assert_eq!(1, size);

        let (ch, size) = utf8::decode_last(b"a\xE2\x98");
        assert_eq!(None, ch);
        assert_eq!(2, size);

        let (ch, size) = utf8::decode_last(b"a\xF0\x9D\x9C");
        assert_eq!(None, ch);
        assert_eq!(3, size);
    }

    #[test]
    fn decode_last_lossy() {
        let (ch, size) = utf8::decode_last_lossy(b"");
        assert_eq!('\u{FFFD}', ch);
        assert_eq!(0, size);

        let (ch, size) = utf8::decode_last_lossy(b"\xFF");
        assert_eq!('\u{FFFD}', ch);
        assert_eq!(1, size);

        let (ch, size) = utf8::decode_last_lossy(b"\xCE\xF0");
        assert_eq!('\u{FFFD}', ch);
        assert_eq!(1, size);

        let (ch, size) = utf8::decode_last_lossy(b"\xCE");
        assert_eq!('\u{FFFD}', ch);
        assert_eq!(1, size);

        let (ch, size) = utf8::decode_last_lossy(b"\xE2\x98\xF0");
        assert_eq!('\u{FFFD}', ch);
        assert_eq!(1, size);

        let (ch, size) = utf8::decode_last_lossy(b"\xE2\x98");
        assert_eq!('\u{FFFD}', ch);
        assert_eq!(2, size);

        let (ch, size) = utf8::decode_last_lossy(b"\xF0\x9D\x9D\xF0");
        assert_eq!('\u{FFFD}', ch);
        assert_eq!(1, size);

        let (ch, size) = utf8::decode_last_lossy(b"\xF0\x9D\x9D");
        assert_eq!('\u{FFFD}', ch);
        assert_eq!(3, size);

        let (ch, size) = utf8::decode_last_lossy(b"\xF0\x82\x82\xAC");
        assert_eq!('\u{FFFD}', ch);
        assert_eq!(1, size);

        let (ch, size) = utf8::decode_last_lossy(b"\xED\xA0\x80");
        assert_eq!('\u{FFFD}', ch);
        assert_eq!(1, size);

        let (ch, size) = utf8::decode_last_lossy(b"\xED\xA0");
        assert_eq!('\u{FFFD}', ch);
        assert_eq!(1, size);

        let (ch, size) = utf8::decode_last_lossy(b"\xED");
        assert_eq!('\u{FFFD}', ch);
        assert_eq!(1, size);

        let (ch, size) = utf8::decode_last_lossy(b"a\xCE");
        assert_eq!('\u{FFFD}', ch);
        assert_eq!(1, size);

        let (ch, size) = utf8::decode_last_lossy(b"a\xE2\x98");
        assert_eq!('\u{FFFD}', ch);
        assert_eq!(2, size);

        let (ch, size) = utf8::decode_last_lossy(b"a\xF0\x9D\x9C");
        assert_eq!('\u{FFFD}', ch);
        assert_eq!(3, size);
    }

    #[test]
    fn chars() {
        for (i, &(expected, input)) in LOSSY_TESTS.iter().enumerate() {
            let got: String = B(input).chars().collect();
            assert_eq!(
                expected, got,
                "chars(ith: {:?}, given: {:?})",
                i, input,
            );
            let got: String =
                B(input).char_indices().map(|(_, _, ch)| ch).collect();
            assert_eq!(
                expected, got,
                "char_indices(ith: {:?}, given: {:?})",
                i, input,
            );

            let expected: String = expected.chars().rev().collect();

            let got: String = B(input).chars().rev().collect();
            assert_eq!(
                expected, got,
                "chars.rev(ith: {:?}, given: {:?})",
                i, input,
            );
            let got: String =
                B(input).char_indices().rev().map(|(_, _, ch)| ch).collect();
            assert_eq!(
                expected, got,
                "char_indices.rev(ith: {:?}, given: {:?})",
                i, input,
            );
        }
    }

    #[test]
    fn utf8_chunks() {
        let mut c = utf8::Utf8Chunks { bytes: b"123\xC0" };
        assert_eq!(
            (c.next(), c.next()),
            (
                Some(utf8::Utf8Chunk {
                    valid: "123",
                    invalid: b"\xC0".as_bstr(),
                    incomplete: false,
                }),
                None,
            )
        );

        let mut c = utf8::Utf8Chunks { bytes: b"123\xFF\xFF" };
        assert_eq!(
            (c.next(), c.next(), c.next()),
            (
                Some(utf8::Utf8Chunk {
                    valid: "123",
                    invalid: b"\xFF".as_bstr(),
                    incomplete: false,
                }),
                Some(utf8::Utf8Chunk {
                    valid: "",
                    invalid: b"\xFF".as_bstr(),
                    incomplete: false,
                }),
                None,
            )
        );

        let mut c = utf8::Utf8Chunks { bytes: b"123\xD0" };
        assert_eq!(
            (c.next(), c.next()),
            (
                Some(utf8::Utf8Chunk {
                    valid: "123",
                    invalid: b"\xD0".as_bstr(),
                    incomplete: true,
                }),
                None,
            )
        );

        let mut c = utf8::Utf8Chunks { bytes: b"123\xD0456" };
        assert_eq!(
            (c.next(), c.next(), c.next()),
            (
                Some(utf8::Utf8Chunk {
                    valid: "123",
                    invalid: b"\xD0".as_bstr(),
                    incomplete: false,
                }),
                Some(utf8::Utf8Chunk {
                    valid: "456",
                    invalid: b"".as_bstr(),
                    incomplete: false,
                }),
                None,
            )
        );

        let mut c = utf8::Utf8Chunks { bytes: b"123\xE2\x98" };
        assert_eq!(
            (c.next(), c.next()),
            (
                Some(utf8::Utf8Chunk {
                    valid: "123",
                    invalid: b"\xE2\x98".as_bstr(),
                    incomplete: true,
                }),
                None,
            )
        );

        let mut c = utf8::Utf8Chunks { bytes: b"123\xF4\x8F\xBF" };
        assert_eq!(
            (c.next(), c.next()),
            (
                Some(utf8::Utf8Chunk {
                    valid: "123",
                    invalid: b"\xF4\x8F\xBF".as_bstr(),
                    incomplete: true,
                }),
                None,
            )
        );
    }
}