pub struct HashSet<T, S = BuildHasherDefault<AHasher>, A = Global>where
A: Allocator,{ /* private fields */ }
Expand description
A hash set implemented as a HashMap
where the value is ()
.
As with the HashMap
type, a HashSet
requires that the elements
implement the Eq
and Hash
traits. This can frequently be achieved by
using #[derive(PartialEq, Eq, Hash)]
. If you implement these yourself,
it is important that the following property holds:
k1 == k2 -> hash(k1) == hash(k2)
In other words, if two keys are equal, their hashes must be equal.
It is a logic error for an item to be modified in such a way that the
item’s hash, as determined by the Hash
trait, or its equality, as
determined by the Eq
trait, changes while it is in the set. This is
normally only possible through Cell
, RefCell
, global state, I/O, or
unsafe code.
It is also a logic error for the Hash
implementation of a key to panic.
This is generally only possible if the trait is implemented manually. If a
panic does occur then the contents of the HashSet
may become corrupted and
some items may be dropped from the table.
§Examples
use rune::alloc::HashSet;
// Type inference lets us omit an explicit type signature (which
// would be `HashSet<String>` in this example).
let mut books = HashSet::new();
// Add some books.
books.try_insert("A Dance With Dragons".to_string())?;
books.try_insert("To Kill a Mockingbird".to_string())?;
books.try_insert("The Odyssey".to_string())?;
books.try_insert("The Great Gatsby".to_string())?;
// Check for a specific one.
if !books.contains("The Winds of Winter") {
println!("We have {} books, but The Winds of Winter ain't one.",
books.len());
}
// Remove a book.
books.remove("The Odyssey");
// Iterate over everything.
for book in &books {
println!("{}", book);
}
The easiest way to use HashSet
with a custom type is to derive
Eq
and Hash
. We must also derive PartialEq
. This will in the
future be implied by Eq
.
use rune::alloc::HashSet;
#[derive(Hash, Eq, PartialEq, Debug)]
struct Viking {
name: String,
power: usize,
}
let mut vikings = HashSet::new();
vikings.try_insert(Viking { name: "Einar".to_string(), power: 9 })?;
vikings.try_insert(Viking { name: "Einar".to_string(), power: 9 })?;
vikings.try_insert(Viking { name: "Olaf".to_string(), power: 4 })?;
vikings.try_insert(Viking { name: "Harald".to_string(), power: 8 })?;
// Use derived implementation to print the vikings.
for x in &vikings {
println!("{:?}", x);
}
A HashSet
with fixed list of elements can be initialized from an array:
use rune::alloc::HashSet;
use rune::alloc::prelude::*;
let viking_names: HashSet<&'static str> =
[ "Einar", "Olaf", "Harald" ].iter().copied().try_collect()?;
// use the values stored in the set
Implementations§
Source§impl<T> HashSet<T>
impl<T> HashSet<T>
Sourcepub fn new() -> HashSet<T>
pub fn new() -> HashSet<T>
Creates an empty HashSet
.
The hash set is initially created with a capacity of 0, so it will not allocate until it is first inserted into.
§HashDoS resistance
The hash_builder
normally use a fixed key by default and that does
not allow the HashSet
to be protected against attacks such as HashDoS
.
Users who require HashDoS resistance should explicitly use
ahash::RandomState
or std::collections::hash_map::RandomState
as the hasher when creating a HashSet
, for example with
with_hasher
method.
§Examples
use rune::alloc::HashSet;
let set: HashSet<i32> = HashSet::new();
Sourcepub fn try_with_capacity(capacity: usize) -> Result<HashSet<T>, Error>
pub fn try_with_capacity(capacity: usize) -> Result<HashSet<T>, Error>
Creates an empty HashSet
with the specified capacity.
The hash set will be able to hold at least capacity
elements without
reallocating. If capacity
is 0, the hash set will not allocate.
§HashDoS resistance
The hash_builder
normally use a fixed key by default and that does not
allow the HashSet
to be protected against attacks such as HashDoS
.
Users who require HashDoS resistance should explicitly use
ahash::RandomState
or std::collections::hash_map::RandomState
as
the hasher when creating a HashSet
, for example with
try_with_capacity_and_hasher
method.
§Examples
use rune::alloc::HashSet;
let set: HashSet<i32> = HashSet::try_with_capacity(10)?;
assert!(set.capacity() >= 10);
Source§impl<T, A> HashSet<T, BuildHasherDefault<AHasher>, A>
impl<T, A> HashSet<T, BuildHasherDefault<AHasher>, A>
Sourcepub fn new_in(alloc: A) -> HashSet<T, BuildHasherDefault<AHasher>, A>
pub fn new_in(alloc: A) -> HashSet<T, BuildHasherDefault<AHasher>, A>
Creates an empty HashSet
.
The hash set is initially created with a capacity of 0, so it will not allocate until it is first inserted into.
§HashDoS resistance
The hash_builder
normally use a fixed key by default and that does
not allow the HashSet
to be protected against attacks such as HashDoS
.
Users who require HashDoS resistance should explicitly use
ahash::RandomState
or std::collections::hash_map::RandomState
as the hasher when creating a HashSet
, for example with
with_hasher_in
method.
§Examples
use rune::alloc::HashSet;
use rune::alloc::alloc::Global;
let set: HashSet<i32> = HashSet::new_in(Global);
Sourcepub fn try_with_capacity_in(
capacity: usize,
alloc: A,
) -> Result<HashSet<T, BuildHasherDefault<AHasher>, A>, Error>
pub fn try_with_capacity_in( capacity: usize, alloc: A, ) -> Result<HashSet<T, BuildHasherDefault<AHasher>, A>, Error>
Creates an empty HashSet
with the specified capacity.
The hash set will be able to hold at least capacity
elements without
reallocating. If capacity
is 0, the hash set will not allocate.
§HashDoS resistance
The hash_builder
normally use a fixed key by default and that does not
allow the HashSet
to be protected against attacks such as HashDoS
.
Users who require HashDoS resistance should explicitly use
ahash::RandomState
or std::collections::hash_map::RandomState
as
the hasher when creating a HashSet
, for example with
try_with_capacity_and_hasher_in
method.
§Examples
use rune::alloc::HashSet;
let set: HashSet<i32> = HashSet::try_with_capacity(10)?;
assert!(set.capacity() >= 10);
Source§impl<T, S, A> HashSet<T, S, A>where
A: Allocator,
impl<T, S, A> HashSet<T, S, A>where
A: Allocator,
Sourcepub fn capacity(&self) -> usize
pub fn capacity(&self) -> usize
Returns the number of elements the set can hold without reallocating.
§Examples
use rune::alloc::HashSet;
let set: HashSet<i32> = HashSet::try_with_capacity(100)?;
assert!(set.capacity() >= 100);
Sourcepub fn iter(&self) -> Iter<'_, T>
pub fn iter(&self) -> Iter<'_, T>
An iterator visiting all elements in arbitrary order.
The iterator element type is &'a T
.
§Examples
use rune::alloc::HashSet;
let mut set = HashSet::new();
set.try_insert("a")?;
set.try_insert("b")?;
// Will print in an arbitrary order.
for x in set.iter() {
println!("{}", x);
}
Sourcepub fn len(&self) -> usize
pub fn len(&self) -> usize
Returns the number of elements in the set.
§Examples
use rune::alloc::HashSet;
let mut v = HashSet::new();
assert_eq!(v.len(), 0);
v.try_insert(1)?;
assert_eq!(v.len(), 1);
Sourcepub fn is_empty(&self) -> bool
pub fn is_empty(&self) -> bool
Returns true
if the set contains no elements.
§Examples
use rune::alloc::HashSet;
let mut v = HashSet::new();
assert!(v.is_empty());
v.try_insert(1)?;
assert!(!v.is_empty());
Sourcepub fn drain(&mut self) -> Drain<'_, T, A>
pub fn drain(&mut self) -> Drain<'_, T, A>
Clears the set, returning all elements in an iterator.
§Examples
use rune::alloc::HashSet;
let mut set: HashSet<_> = HashSet::try_from([1, 2, 3])?;
assert!(!set.is_empty());
// print 1, 2, 3 in an arbitrary order
for i in set.drain() {
println!("{}", i);
}
assert!(set.is_empty());
Sourcepub fn retain<F>(&mut self, f: F)
pub fn retain<F>(&mut self, f: F)
Retains only the elements specified by the predicate.
In other words, remove all elements e
such that f(&e)
returns false
.
§Examples
use rune::alloc::HashSet;
let mut set: HashSet<i32> = HashSet::try_from([1, 2, 3, 4, 5, 6])?;
set.retain(|&k| k % 2 == 0);
assert_eq!(set.len(), 3);
Sourcepub fn extract_if<F>(&mut self, f: F) -> ExtractIf<'_, T, F, A>
pub fn extract_if<F>(&mut self, f: F) -> ExtractIf<'_, T, F, A>
Drains elements which are true under the given predicate, and returns an iterator over the removed items.
In other words, move all elements e
such that f(&e)
returns true
out into another iterator.
If the returned ExtractIf
is not exhausted, e.g. because it is dropped
without iterating or the iteration short-circuits, then the remaining
elements will be retained. Use retain
with a negated predicate if
you do not need the returned iterator.
§Examples
use rune::alloc::{try_vec, HashSet, Vec};
use rune::alloc::prelude::*;
let mut set: HashSet<i32> = (0..8).try_collect()?;
let drained: HashSet<i32> = set.extract_if(|v| v % 2 == 0).try_collect()?;
let mut evens = drained.into_iter().try_collect::<Vec<_>>()?;
let mut odds = set.into_iter().try_collect::<Vec<_>>()?;
evens.sort();
odds.sort();
assert_eq!(evens, try_vec![0, 2, 4, 6]);
assert_eq!(odds, try_vec![1, 3, 5, 7]);
Source§impl<T, S> HashSet<T, S>
impl<T, S> HashSet<T, S>
Sourcepub const fn with_hasher(hasher: S) -> HashSet<T, S>
pub const fn with_hasher(hasher: S) -> HashSet<T, S>
Creates a new empty hash set which will use the given hasher to hash keys.
The hash set is initially created with a capacity of 0, so it will not allocate until it is first inserted into.
§HashDoS resistance
The hash_builder
normally use a fixed key by default and that does
not allow the HashSet
to be protected against attacks such as HashDoS
.
Users who require HashDoS resistance should explicitly use
ahash::RandomState
or std::collections::hash_map::RandomState
as the hasher when creating a HashSet
.
The hash_builder
passed should implement the BuildHasher
trait for
the HashSet to be useful, see its documentation for details.
§Examples
use rune::alloc::HashSet;
use rune::alloc::hash_map::DefaultHashBuilder;
let s = DefaultHashBuilder::default();
let mut set = HashSet::with_hasher(s);
set.try_insert(2)?;
Sourcepub fn try_with_capacity_and_hasher(
capacity: usize,
hasher: S,
) -> Result<HashSet<T, S>, Error>
pub fn try_with_capacity_and_hasher( capacity: usize, hasher: S, ) -> Result<HashSet<T, S>, Error>
Creates an empty HashSet
with the specified capacity, using
hasher
to hash the keys.
The hash set will be able to hold at least capacity
elements without
reallocating. If capacity
is 0, the hash set will not allocate.
§HashDoS resistance
The hash_builder
normally use a fixed key by default and that does
not allow the HashSet
to be protected against attacks such as HashDoS
.
Users who require HashDoS resistance should explicitly use
ahash::RandomState
or std::collections::hash_map::RandomState
as the hasher when creating a HashSet
.
The hash_builder
passed should implement the BuildHasher
trait for
the HashSet to be useful, see its documentation for details.
§Examples
use rune::alloc::HashSet;
use rune::alloc::hash_map::DefaultHashBuilder;
let s = DefaultHashBuilder::default();
let mut set = HashSet::try_with_capacity_and_hasher(10, s)?;
set.try_insert(1)?;
Source§impl<T, S, A> HashSet<T, S, A>where
A: Allocator,
impl<T, S, A> HashSet<T, S, A>where
A: Allocator,
Sourcepub const fn with_hasher_in(hasher: S, alloc: A) -> HashSet<T, S, A>
pub const fn with_hasher_in(hasher: S, alloc: A) -> HashSet<T, S, A>
Creates a new empty hash set which will use the given hasher to hash keys.
The hash set is initially created with a capacity of 0, so it will not allocate until it is first inserted into.
§HashDoS resistance
The hash_builder
normally use a fixed key by default and that does
not allow the HashSet
to be protected against attacks such as HashDoS
.
Users who require HashDoS resistance should explicitly use
ahash::RandomState
or std::collections::hash_map::RandomState
as the hasher when creating a HashSet
.
The hash_builder
passed should implement the BuildHasher
trait for
the HashSet to be useful, see its documentation for details.
§Examples
use rune::alloc::HashSet;
use rune::alloc::hash_map::DefaultHashBuilder;
let s = DefaultHashBuilder::default();
let mut set = HashSet::with_hasher(s);
set.try_insert(2)?;
Sourcepub fn try_with_capacity_and_hasher_in(
capacity: usize,
hasher: S,
alloc: A,
) -> Result<HashSet<T, S, A>, Error>
pub fn try_with_capacity_and_hasher_in( capacity: usize, hasher: S, alloc: A, ) -> Result<HashSet<T, S, A>, Error>
Creates an empty HashSet
with the specified capacity, using
hasher
to hash the keys.
The hash set will be able to hold at least capacity
elements without
reallocating. If capacity
is 0, the hash set will not allocate.
§HashDoS resistance
The hash_builder
normally use a fixed key by default and that does
not allow the HashSet
to be protected against attacks such as HashDoS
.
Users who require HashDoS resistance should explicitly use
ahash::RandomState
or std::collections::hash_map::RandomState
as the hasher when creating a HashSet
.
The hash_builder
passed should implement the BuildHasher
trait for
the HashSet to be useful, see its documentation for details.
§Examples
use rune::alloc::HashSet;
use rune::alloc::alloc::Global;
use rune::alloc::hash_map::DefaultHashBuilder;
let s = DefaultHashBuilder::default();
let mut set = HashSet::try_with_capacity_and_hasher_in(10, s, Global)?;
set.try_insert(1)?;
Sourcepub fn hasher(&self) -> &S
pub fn hasher(&self) -> &S
Returns a reference to the set’s BuildHasher
.
§Examples
use rune::alloc::HashSet;
use rune::alloc::hash_map::DefaultHashBuilder;
let hasher = DefaultHashBuilder::default();
let set: HashSet<i32> = HashSet::with_hasher(hasher);
let hasher: &DefaultHashBuilder = set.hasher();
Source§impl<T, S, A> HashSet<T, S, A>
impl<T, S, A> HashSet<T, S, A>
Sourcepub fn try_reserve(&mut self, additional: usize) -> Result<(), Error>
pub fn try_reserve(&mut self, additional: usize) -> Result<(), Error>
Tries to reserve capacity for at least additional
more elements to be inserted
in the given HashSet<K,V>
. The collection may reserve more space to avoid
frequent reallocations.
§Errors
If the capacity overflows, or the allocator reports a failure, then an error is returned.
§Examples
use rune::alloc::HashSet;
let mut set: HashSet<i32> = HashSet::new();
set.try_reserve(10).expect("why is the test harness OOMing on 10 bytes?");
Sourcepub fn try_shrink_to_fit(&mut self) -> Result<(), Error>
pub fn try_shrink_to_fit(&mut self) -> Result<(), Error>
Shrinks the capacity of the set as much as possible. It will drop down as much as possible while maintaining the internal rules and possibly leaving some space in accordance with the resize policy.
§Examples
use rune::alloc::HashSet;
let mut set = HashSet::try_with_capacity(100)?;
set.try_insert(1)?;
set.try_insert(2)?;
assert!(set.capacity() >= 100);
set.try_shrink_to_fit()?;
assert!(set.capacity() >= 2);
Sourcepub fn try_shrink_to(&mut self, min_capacity: usize) -> Result<(), Error>
pub fn try_shrink_to(&mut self, min_capacity: usize) -> Result<(), Error>
Shrinks the capacity of the set with a lower limit. It will drop down no lower than the supplied limit while maintaining the internal rules and possibly leaving some space in accordance with the resize policy.
Panics if the current capacity is smaller than the supplied minimum capacity.
§Examples
use rune::alloc::HashSet;
let mut set = HashSet::try_with_capacity(100)?;
set.try_insert(1)?;
set.try_insert(2)?;
assert!(set.capacity() >= 100);
set.try_shrink_to(10)?;
assert!(set.capacity() >= 10);
set.try_shrink_to(0)?;
assert!(set.capacity() >= 2);
Sourcepub fn difference<'a>(
&'a self,
other: &'a HashSet<T, S, A>,
) -> Difference<'a, T, S, A>
pub fn difference<'a>( &'a self, other: &'a HashSet<T, S, A>, ) -> Difference<'a, T, S, A>
Visits the values representing the difference,
i.e., the values that are in self
but not in other
.
§Examples
use rune::alloc::HashSet;
use rune::alloc::prelude::*;
let a: HashSet<_> = HashSet::try_from([1, 2, 3])?;
let b: HashSet<_> = HashSet::try_from([4, 2, 3, 4])?;
// Can be seen as `a - b`.
for x in a.difference(&b) {
println!("{}", x); // Print 1
}
let diff: HashSet<_> = a.difference(&b).copied().try_collect()?;
assert_eq!(diff, HashSet::try_from([1])?);
// Note that difference is not symmetric,
// and `b - a` means something else:
let diff: HashSet<_> = b.difference(&a).copied().try_collect()?;
assert_eq!(diff, HashSet::try_from([4])?);
Sourcepub fn symmetric_difference<'a>(
&'a self,
other: &'a HashSet<T, S, A>,
) -> SymmetricDifference<'a, T, S, A>
pub fn symmetric_difference<'a>( &'a self, other: &'a HashSet<T, S, A>, ) -> SymmetricDifference<'a, T, S, A>
Visits the values representing the symmetric difference,
i.e., the values that are in self
or in other
but not in both.
§Examples
use rune::alloc::HashSet;
use rune::alloc::prelude::*;
let a: HashSet<_> = HashSet::try_from([1, 2, 3])?;
let b: HashSet<_> = HashSet::try_from([4, 2, 3, 4])?;
// Print 1, 4 in arbitrary order.
for x in a.symmetric_difference(&b) {
println!("{}", x);
}
let diff1: HashSet<_> = a.symmetric_difference(&b).copied().try_collect()?;
let diff2: HashSet<_> = b.symmetric_difference(&a).copied().try_collect()?;
assert_eq!(diff1, diff2);
assert_eq!(diff1, HashSet::try_from([1, 4])?);
Sourcepub fn intersection<'a>(
&'a self,
other: &'a HashSet<T, S, A>,
) -> Intersection<'a, T, S, A>
pub fn intersection<'a>( &'a self, other: &'a HashSet<T, S, A>, ) -> Intersection<'a, T, S, A>
Visits the values representing the intersection,
i.e., the values that are both in self
and other
.
§Examples
use rune::alloc::HashSet;
use rune::alloc::prelude::*;
let a: HashSet<_> = HashSet::try_from([1, 2, 3])?;
let b: HashSet<_> = HashSet::try_from([4, 2, 3, 4])?;
// Print 2, 3 in arbitrary order.
for x in a.intersection(&b) {
println!("{}", x);
}
let intersection: HashSet<_> = a.intersection(&b).copied().try_collect()?;
assert_eq!(intersection, HashSet::try_from([2, 3])?);
Sourcepub fn union<'a>(&'a self, other: &'a HashSet<T, S, A>) -> Union<'a, T, S, A>
pub fn union<'a>(&'a self, other: &'a HashSet<T, S, A>) -> Union<'a, T, S, A>
Visits the values representing the union,
i.e., all the values in self
or other
, without duplicates.
§Examples
use rune::alloc::HashSet;
use rune::alloc::prelude::*;
let a: HashSet<_> = HashSet::try_from([1, 2, 3])?;
let b: HashSet<_> = HashSet::try_from([4, 2, 3, 4])?;
// Print 1, 2, 3, 4 in arbitrary order.
for x in a.union(&b) {
println!("{}", x);
}
let union: HashSet<_> = a.union(&b).copied().try_collect()?;
assert_eq!(union, HashSet::try_from([1, 2, 3, 4])?);
Sourcepub fn contains<Q>(&self, value: &Q) -> bool
pub fn contains<Q>(&self, value: &Q) -> bool
Returns true
if the set contains a value.
The value may be any borrowed form of the set’s value type, but
Hash
and Eq
on the borrowed form must match those for
the value type.
§Examples
use rune::alloc::HashSet;
let set: HashSet<_> = HashSet::try_from([1, 2, 3])?;
assert_eq!(set.contains(&1), true);
assert_eq!(set.contains(&4), false);
Sourcepub fn get<Q>(&self, value: &Q) -> Option<&T>
pub fn get<Q>(&self, value: &Q) -> Option<&T>
Returns a reference to the value in the set, if any, that is equal to the given value.
The value may be any borrowed form of the set’s value type, but
Hash
and Eq
on the borrowed form must match those for
the value type.
§Examples
use rune::alloc::HashSet;
let set: HashSet<_> = HashSet::try_from([1, 2, 3])?;
assert_eq!(set.get(&2), Some(&2));
assert_eq!(set.get(&4), None);
Sourcepub fn get_or_try_insert(&mut self, value: T) -> Result<&T, Error>
pub fn get_or_try_insert(&mut self, value: T) -> Result<&T, Error>
Inserts the given value
into the set if it is not present, then
returns a reference to the value in the set.
§Examples
use rune::alloc::HashSet;
let mut set: HashSet<_> = HashSet::try_from([1, 2, 3])?;
assert_eq!(set.len(), 3);
assert_eq!(set.get_or_try_insert(2)?, &2);
assert_eq!(set.get_or_try_insert(100)?, &100);
assert_eq!(set.len(), 4); // 100 was inserted
Sourcepub fn get_or_try_insert_owned<Q>(&mut self, value: &Q) -> Result<&T, Error>
pub fn get_or_try_insert_owned<Q>(&mut self, value: &Q) -> Result<&T, Error>
Inserts an owned copy of the given value
into the set if it is not
present, then returns a reference to the value in the set.
§Examples
use rune::alloc::{HashSet, String, Error};
use rune::alloc::prelude::*;
let mut set: HashSet<String> = ["cat", "dog", "horse"]
.iter().map(|&pet| pet.try_to_owned()).try_collect::<Result<_, _>>()??;
assert_eq!(set.len(), 3);
for &pet in &["cat", "dog", "fish"] {
let value = set.get_or_try_insert_owned(pet)?;
assert_eq!(value, pet);
}
assert_eq!(set.len(), 4); // a new "fish" was inserted
Sourcepub fn get_or_try_insert_with<Q, F>(
&mut self,
value: &Q,
f: F,
) -> Result<&T, Error>
pub fn get_or_try_insert_with<Q, F>( &mut self, value: &Q, f: F, ) -> Result<&T, Error>
Inserts a value computed from f
into the set if the given value
is
not present, then returns a reference to the value in the set.
§Examples
use rune::alloc::{HashSet, String, Error};
use rune::alloc::prelude::*;
let mut set: HashSet<String> = ["cat", "dog", "horse"]
.iter().map(|&pet| pet.try_to_owned()).try_collect::<Result<_, _>>()??;
assert_eq!(set.len(), 3);
for &pet in &["cat", "dog", "fish"] {
let value = set.get_or_try_insert_with(pet, str::try_to_owned)?;
assert_eq!(value, pet);
}
assert_eq!(set.len(), 4); // a new "fish" was inserted
Sourcepub fn entry(&mut self, value: T) -> Entry<'_, T, S, A>
pub fn entry(&mut self, value: T) -> Entry<'_, T, S, A>
Gets the given value’s corresponding entry in the set for in-place manipulation.
§Examples
use rune::alloc::HashSet;
use rune::alloc::hash_set::Entry::*;
let mut singles = HashSet::new();
let mut dupes = HashSet::new();
for ch in "a short treatise on fungi".chars() {
if let Vacant(dupe_entry) = dupes.entry(ch) {
// We haven't already seen a duplicate, so
// check if we've at least seen it once.
match singles.entry(ch) {
Vacant(single_entry) => {
// We found a new character for the first time.
single_entry.try_insert()?;
}
Occupied(single_entry) => {
// We've already seen this once, "move" it to dupes.
single_entry.remove();
dupe_entry.try_insert()?;
}
}
}
}
assert!(!singles.contains(&'t') && dupes.contains(&'t'));
assert!(singles.contains(&'u') && !dupes.contains(&'u'));
assert!(!singles.contains(&'v') && !dupes.contains(&'v'));
Sourcepub fn is_disjoint(&self, other: &HashSet<T, S, A>) -> bool
pub fn is_disjoint(&self, other: &HashSet<T, S, A>) -> bool
Returns true
if self
has no elements in common with other
.
This is equivalent to checking for an empty intersection.
§Examples
use rune::alloc::HashSet;
let a = HashSet::try_from([1, 2, 3])?;
let mut b = HashSet::new();
assert_eq!(a.is_disjoint(&b), true);
b.try_insert(4)?;
assert_eq!(a.is_disjoint(&b), true);
b.try_insert(1)?;
assert_eq!(a.is_disjoint(&b), false);
Sourcepub fn is_subset(&self, other: &HashSet<T, S, A>) -> bool
pub fn is_subset(&self, other: &HashSet<T, S, A>) -> bool
Returns true
if the set is a subset of another,
i.e., other
contains at least all the values in self
.
§Examples
use rune::alloc::HashSet;
let sup = HashSet::try_from([1, 2, 3])?;
let mut set = HashSet::new();
assert_eq!(set.is_subset(&sup), true);
set.try_insert(2)?;
assert_eq!(set.is_subset(&sup), true);
set.try_insert(4)?;
assert_eq!(set.is_subset(&sup), false);
Sourcepub fn is_superset(&self, other: &HashSet<T, S, A>) -> bool
pub fn is_superset(&self, other: &HashSet<T, S, A>) -> bool
Returns true
if the set is a superset of another,
i.e., self
contains at least all the values in other
.
§Examples
use rune::alloc::HashSet;
let sub = HashSet::try_from([1, 2])?;
let mut set = HashSet::new();
assert_eq!(set.is_superset(&sub), false);
set.try_insert(0)?;
set.try_insert(1)?;
assert_eq!(set.is_superset(&sub), false);
set.try_insert(2)?;
assert_eq!(set.is_superset(&sub), true);
Sourcepub fn try_insert(&mut self, value: T) -> Result<bool, Error>
pub fn try_insert(&mut self, value: T) -> Result<bool, Error>
Adds a value to the set.
If the set did not have this value present, true
is returned.
If the set did have this value present, false
is returned.
§Examples
use rune::alloc::HashSet;
let mut set = HashSet::new();
assert_eq!(set.try_insert(2)?, true);
assert_eq!(set.try_insert(2)?, false);
assert_eq!(set.len(), 1);
Sourcepub fn try_insert_unique_unchecked(&mut self, value: T) -> Result<&T, Error>
pub fn try_insert_unique_unchecked(&mut self, value: T) -> Result<&T, Error>
Insert a value the set without checking if the value already exists in the set.
Returns a reference to the value just inserted.
This operation is safe if a value does not exist in the set.
However, if a value exists in the set already, the behavior is unspecified: this operation may panic, loop forever, or any following operation with the set may panic, loop forever or return arbitrary result.
That said, this operation (and following operations) are guaranteed to not violate memory safety.
This operation is faster than regular insert, because it does not perform lookup before insertion.
This operation is useful during initial population of the set. For example, when constructing a set from another set, we know that values are unique.
Sourcepub fn try_replace(&mut self, value: T) -> Result<Option<T>, Error>
pub fn try_replace(&mut self, value: T) -> Result<Option<T>, Error>
Adds a value to the set, replacing the existing value, if any, that is equal to the given one. Returns the replaced value.
§Examples
use rune::alloc::HashSet;
let mut set = HashSet::new();
set.try_insert(Vec::<i32>::new())?;
assert_eq!(set.get(&[][..]).unwrap().capacity(), 0);
set.try_replace(Vec::with_capacity(10))?;
assert_eq!(set.get(&[][..]).unwrap().capacity(), 10);
Sourcepub fn remove<Q>(&mut self, value: &Q) -> bool
pub fn remove<Q>(&mut self, value: &Q) -> bool
Removes a value from the set. Returns whether the value was present in the set.
The value may be any borrowed form of the set’s value type, but
Hash
and Eq
on the borrowed form must match those for
the value type.
§Examples
use rune::alloc::HashSet;
let mut set = HashSet::new();
set.try_insert(2)?;
assert_eq!(set.remove(&2), true);
assert_eq!(set.remove(&2), false);
Sourcepub fn take<Q>(&mut self, value: &Q) -> Option<T>
pub fn take<Q>(&mut self, value: &Q) -> Option<T>
Removes and returns the value in the set, if any, that is equal to the given one.
The value may be any borrowed form of the set’s value type, but
Hash
and Eq
on the borrowed form must match those for
the value type.
§Examples
use rune::alloc::HashSet;
let mut set: HashSet<_> = HashSet::try_from([1, 2, 3])?;
assert_eq!(set.take(&2), Some(2));
assert_eq!(set.take(&2), None);
Source§impl<T, S, A> HashSet<T, S, A>where
A: Allocator,
impl<T, S, A> HashSet<T, S, A>where
A: Allocator,
Sourcepub fn raw_table(&self) -> &RawTable<(T, ()), A>
pub fn raw_table(&self) -> &RawTable<(T, ()), A>
Returns a reference to the RawTable
used underneath HashSet
.
This function is only available if the raw
feature of the crate is enabled.
§Note
Calling this function is safe, but using the raw hash table API may require unsafe functions or blocks.
RawTable
API gives the lowest level of control under the set that can be useful
for extending the HashSet’s API, but may lead to undefined behavior.
Sourcepub fn raw_table_mut(&mut self) -> &mut RawTable<(T, ()), A>
pub fn raw_table_mut(&mut self) -> &mut RawTable<(T, ()), A>
Returns a mutable reference to the RawTable
used underneath
HashSet
. This function is only available if the raw
feature of the
crate is enabled.
§Note
Calling this function is safe, but using the raw hash table API may require unsafe functions or blocks.
RawTable
API gives the lowest level of control under the set that can
be useful for extending the HashSet’s API, but may lead to undefined
behavior.
Trait Implementations§
Source§impl<'de, T, S, A> Deserialize<'de> for HashSet<T, S, A>
impl<'de, T, S, A> Deserialize<'de> for HashSet<T, S, A>
Source§fn deserialize<D>(
deserializer: D,
) -> Result<HashSet<T, S, A>, <D as Deserializer<'de>>::Error>where
D: Deserializer<'de>,
fn deserialize<D>(
deserializer: D,
) -> Result<HashSet<T, S, A>, <D as Deserializer<'de>>::Error>where
D: Deserializer<'de>,
Source§impl<'a, T, S, A> IntoIterator for &'a HashSet<T, S, A>where
A: Allocator,
impl<'a, T, S, A> IntoIterator for &'a HashSet<T, S, A>where
A: Allocator,
Source§impl<T, S, A> IntoIterator for HashSet<T, S, A>where
A: Allocator,
impl<T, S, A> IntoIterator for HashSet<T, S, A>where
A: Allocator,
Source§fn into_iter(self) -> IntoIter<T, A>
fn into_iter(self) -> IntoIter<T, A>
Creates a consuming iterator, that is, one that moves each value out of the set in arbitrary order. The set cannot be used after calling this.
§Examples
use rune::alloc::prelude::*;
use rune::alloc::HashSet;
let mut set = HashSet::new();
set.try_insert("a".try_to_string()?)?;
set.try_insert("b".try_to_string()?)?;
// Not possible to collect to a Vec<String> with a regular `.iter()`.
let v: Vec<String> = set.into_iter().try_collect()?;
// Will print in an arbitrary order.
for x in &v {
println!("{}", x);
}
Source§impl<T, H, A> Serialize for HashSet<T, H, A>
impl<T, H, A> Serialize for HashSet<T, H, A>
Source§fn serialize<S>(
&self,
serializer: S,
) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>where
S: Serializer,
fn serialize<S>(
&self,
serializer: S,
) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>where
S: Serializer,
Source§impl<'a, T, S, A> TryExtend<&'a T> for HashSet<T, S, A>
impl<'a, T, S, A> TryExtend<&'a T> for HashSet<T, S, A>
Source§fn try_extend<I>(&mut self, iter: I) -> Result<(), Error>where
I: IntoIterator<Item = &'a T>,
fn try_extend<I>(&mut self, iter: I) -> Result<(), Error>where
I: IntoIterator<Item = &'a T>,
Source§impl<T, S, A> TryExtend<T> for HashSet<T, S, A>
impl<T, S, A> TryExtend<T> for HashSet<T, S, A>
Source§fn try_extend<I>(&mut self, iter: I) -> Result<(), Error>where
I: IntoIterator<Item = T>,
fn try_extend<I>(&mut self, iter: I) -> Result<(), Error>where
I: IntoIterator<Item = T>,
Source§impl<T, A, const N: usize> TryFrom<[T; N]> for HashSet<T, BuildHasherDefault<AHasher>, A>
impl<T, A, const N: usize> TryFrom<[T; N]> for HashSet<T, BuildHasherDefault<AHasher>, A>
Source§fn try_from(
arr: [T; N],
) -> Result<HashSet<T, BuildHasherDefault<AHasher>, A>, <HashSet<T, BuildHasherDefault<AHasher>, A> as TryFrom<[T; N]>>::Error>
fn try_from( arr: [T; N], ) -> Result<HashSet<T, BuildHasherDefault<AHasher>, A>, <HashSet<T, BuildHasherDefault<AHasher>, A> as TryFrom<[T; N]>>::Error>
§Examples
use rune::alloc::HashSet;
let set1: HashSet<_> = HashSet::try_from([1, 2, 3, 4])?;
let set2: HashSet<_> = [1, 2, 3, 4].try_into()?;
assert_eq!(set1, set2);
Source§impl<T, S, A> TryFromIteratorIn<T, A> for HashSet<T, S, A>
impl<T, S, A> TryFromIteratorIn<T, A> for HashSet<T, S, A>
Source§fn try_from_iter_in<I>(iter: I, alloc: A) -> Result<HashSet<T, S, A>, Error>where
I: IntoIterator<Item = T>,
fn try_from_iter_in<I>(iter: I, alloc: A) -> Result<HashSet<T, S, A>, Error>where
I: IntoIterator<Item = T>,
impl<T, S, A> Eq for HashSet<T, S, A>
Auto Trait Implementations§
impl<T, S, A> Freeze for HashSet<T, S, A>
impl<T, S, A> RefUnwindSafe for HashSet<T, S, A>
impl<T, S, A> Send for HashSet<T, S, A>
impl<T, S, A> Sync for HashSet<T, S, A>
impl<T, S, A> Unpin for HashSet<T, S, A>
impl<T, S, A> UnwindSafe for HashSet<T, S, A>
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<Q, K> Equivalent<K> for Q
impl<Q, K> Equivalent<K> for Q
Source§impl<Q, K> Equivalent<K> for Q
impl<Q, K> Equivalent<K> for Q
Source§impl<Q, K> Equivalent<K> for Q
impl<Q, K> Equivalent<K> for Q
Source§fn equivalent(&self, key: &K) -> bool
fn equivalent(&self, key: &K) -> bool
key
and return true
if they are equal.