pub struct BTreeMap<K, V, A = Global>where
A: Allocator,{ /* private fields */ }
Expand description
An ordered map based on a B-Tree.
B-Trees represent a fundamental compromise between cache-efficiency and actually minimizing the amount of work performed in a search. In theory, a binary search tree (BST) is the optimal choice for a sorted map, as a perfectly balanced BST performs the theoretical minimum amount of comparisons necessary to find an element (log2n). However, in practice the way this is done is very inefficient for modern computer architectures. In particular, every element is stored in its own individually heap-allocated node. This means that every single insertion triggers a heap-allocation, and every single comparison should be a cache-miss. Since these are both notably expensive things to do in practice, we are forced to, at the very least, reconsider the BST strategy.
A B-Tree instead makes each node contain B-1 to 2B-1 elements in a contiguous array. By doing this, we reduce the number of allocations by a factor of B, and improve cache efficiency in searches. However, this does mean that searches will have to do more comparisons on average. The precise number of comparisons depends on the node search strategy used. For optimal cache efficiency, one could search the nodes linearly. For optimal comparisons, one could search the node using binary search. As a compromise, one could also perform a linear search that initially only checks every ith element for some choice of i.
Currently, our implementation simply performs naive linear search. This provides excellent performance on small nodes of elements which are cheap to compare. However in the future we would like to further explore choosing the optimal search strategy based on the choice of B, and possibly other factors. Using linear search, searching for a random element is expected to take B * log(n) comparisons, which is generally worse than a BST. In practice, however, performance is excellent.
It is a logic error for a key to be modified in such a way that the key’s ordering relative to
any other key, as determined by the Ord
trait, changes while it is in the map. This is
normally only possible through Cell
, RefCell
, global state, I/O, or unsafe code.
The behavior resulting from such a logic error is not specified, but will be encapsulated to the
BTreeMap
that observed the logic error and not result in undefined behavior. This could
include panics, incorrect results, aborts, memory leaks, and non-termination.
Iterators obtained from functions such as BTreeMap::iter
, BTreeMap::values
, or
BTreeMap::keys
produce their items in order by key, and take worst-case logarithmic and
amortized constant time per item returned.
§Examples
use rune::alloc::BTreeMap;
// type inference lets us omit an explicit type signature (which
// would be `BTreeMap<&str, &str>` in this example).
let mut movie_reviews = BTreeMap::new();
// review some movies.
movie_reviews.try_insert("Office Space", "Deals with real issues in the workplace.")?;
movie_reviews.try_insert("Pulp Fiction", "Masterpiece.")?;
movie_reviews.try_insert("The Godfather", "Very enjoyable.")?;
movie_reviews.try_insert("The Blues Brothers", "Eye lyked it a lot.")?;
// check for a specific one.
if !movie_reviews.contains_key("Les Misérables") {
println!("We've got {} reviews, but Les Misérables ain't one.",
movie_reviews.len());
}
// oops, this review has a lot of spelling mistakes, let's delete it.
movie_reviews.remove("The Blues Brothers");
// look up the values associated with some keys.
let to_find = ["Up!", "Office Space"];
for movie in &to_find {
match movie_reviews.get(movie) {
Some(review) => println!("{movie}: {review}"),
None => println!("{movie} is unreviewed.")
}
}
// Look up the value for a key (will panic if the key is not found).
println!("Movie review: {}", movie_reviews["Office Space"]);
// iterate over everything.
for (movie, review) in &movie_reviews {
println!("{movie}: \"{review}\"");
}
A BTreeMap
with a known list of items can be initialized from an array:
use rune::alloc::BTreeMap;
let solar_distance = BTreeMap::try_from([
("Mercury", 0.4),
("Venus", 0.7),
("Earth", 1.0),
("Mars", 1.5),
])?;
BTreeMap
implements an Entry API
, which allows for complex
methods of getting, setting, updating and removing keys and their values:
use rune::alloc::BTreeMap;
// type inference lets us omit an explicit type signature (which
// would be `BTreeMap<&str, u8>` in this example).
let mut player_stats = BTreeMap::new();
fn random_stat_buff() -> u8 {
// could actually return some random value here - let's just return
// some fixed value for now
42
}
// insert a key only if it doesn't already exist
player_stats.entry("health").or_try_insert(100)?;
// insert a key using a function that provides a new value only if it
// doesn't already exist
player_stats.entry("defence").or_try_insert_with(random_stat_buff)?;
// update a key, guarding against the key possibly not being set
let stat = player_stats.entry("attack").or_try_insert(100)?;
*stat += random_stat_buff();
// modify an entry before an insert with in-place mutation
player_stats.entry("mana").and_modify(|mana| *mana += 200).or_try_insert(100)?;
Implementations§
Source§impl<K, V, A> BTreeMap<K, V, A>where
A: Allocator,
impl<K, V, A> BTreeMap<K, V, A>where
A: Allocator,
Sourcepub fn new_in(alloc: A) -> BTreeMap<K, V, A>
pub fn new_in(alloc: A) -> BTreeMap<K, V, A>
Makes a new empty BTreeMap with a reasonable choice for B.
§Examples
Basic usage:
use rune::alloc::BTreeMap;
use rune::alloc::alloc::Global;
let mut map = BTreeMap::new_in(Global);
// entries can now be inserted into the empty map
map.try_insert(1, "a")?;
Source§impl<K, V, A> BTreeMap<K, V, A>where
A: Allocator,
impl<K, V, A> BTreeMap<K, V, A>where
A: Allocator,
Sourcepub fn get<Q>(&self, key: &Q) -> Option<&V>
pub fn get<Q>(&self, key: &Q) -> Option<&V>
Returns a reference to the value corresponding to the key.
The key may be any borrowed form of the map’s key type, but the ordering on the borrowed form must match the ordering on the key type.
§Examples
Basic usage:
use rune::alloc::BTreeMap;
let mut map = BTreeMap::new();
map.try_insert(1, "a")?;
assert_eq!(map.get(&1), Some(&"a"));
assert_eq!(map.get(&2), None);
Sourcepub fn get_key_value<Q>(&self, k: &Q) -> Option<(&K, &V)>
pub fn get_key_value<Q>(&self, k: &Q) -> Option<(&K, &V)>
Returns the key-value pair corresponding to the supplied key.
The supplied key may be any borrowed form of the map’s key type, but the ordering on the borrowed form must match the ordering on the key type.
§Examples
use rune::alloc::BTreeMap;
let mut map = BTreeMap::new();
map.try_insert(1, "a")?;
assert_eq!(map.get_key_value(&1), Some((&1, &"a")));
assert_eq!(map.get_key_value(&2), None);
Sourcepub fn first_key_value(&self) -> Option<(&K, &V)>
pub fn first_key_value(&self) -> Option<(&K, &V)>
Returns the first key-value pair in the map. The key in this pair is the minimum key in the map.
§Examples
Basic usage:
use rune::alloc::BTreeMap;
let mut map = BTreeMap::new();
assert_eq!(map.first_key_value(), None);
map.try_insert(1, "b")?;
map.try_insert(2, "a")?;
assert_eq!(map.first_key_value(), Some((&1, &"b")));
Sourcepub fn first_entry(&mut self) -> Option<OccupiedEntry<'_, K, V, A>>
pub fn first_entry(&mut self) -> Option<OccupiedEntry<'_, K, V, A>>
Returns the first entry in the map for in-place manipulation. The key of this entry is the minimum key in the map.
§Examples
use rune::alloc::BTreeMap;
let mut map = BTreeMap::new();
map.try_insert(1, "a")?;
map.try_insert(2, "b")?;
if let Some(mut entry) = map.first_entry() {
if *entry.key() > 0 {
entry.insert("first");
}
}
assert_eq!(*map.get(&1).unwrap(), "first");
assert_eq!(*map.get(&2).unwrap(), "b");
Sourcepub fn pop_first(&mut self) -> Option<(K, V)>
pub fn pop_first(&mut self) -> Option<(K, V)>
Removes and returns the first element in the map. The key of this element is the minimum key that was in the map.
§Examples
Draining elements in ascending order, while keeping a usable map each iteration.
use rune::alloc::BTreeMap;
let mut map = BTreeMap::new();
map.try_insert(1, "a")?;
map.try_insert(2, "b")?;
while let Some((key, _val)) = map.pop_first() {
assert!(map.iter().all(|(k, _v)| *k > key));
}
assert!(map.is_empty());
Sourcepub fn last_key_value(&self) -> Option<(&K, &V)>
pub fn last_key_value(&self) -> Option<(&K, &V)>
Returns the last key-value pair in the map. The key in this pair is the maximum key in the map.
§Examples
Basic usage:
use rune::alloc::BTreeMap;
let mut map = BTreeMap::new();
map.try_insert(1, "b")?;
map.try_insert(2, "a")?;
assert_eq!(map.last_key_value(), Some((&2, &"a")));
Sourcepub fn last_entry(&mut self) -> Option<OccupiedEntry<'_, K, V, A>>
pub fn last_entry(&mut self) -> Option<OccupiedEntry<'_, K, V, A>>
Returns the last entry in the map for in-place manipulation. The key of this entry is the maximum key in the map.
§Examples
use rune::alloc::BTreeMap;
let mut map = BTreeMap::new();
map.try_insert(1, "a")?;
map.try_insert(2, "b")?;
if let Some(mut entry) = map.last_entry() {
if *entry.key() > 0 {
entry.insert("last");
}
}
assert_eq!(*map.get(&1).unwrap(), "a");
assert_eq!(*map.get(&2).unwrap(), "last");
Sourcepub fn pop_last(&mut self) -> Option<(K, V)>
pub fn pop_last(&mut self) -> Option<(K, V)>
Removes and returns the last element in the map. The key of this element is the maximum key that was in the map.
§Examples
Draining elements in descending order, while keeping a usable map each iteration.
use rune::alloc::BTreeMap;
let mut map = BTreeMap::new();
map.try_insert(1, "a")?;
map.try_insert(2, "b")?;
while let Some((key, _val)) = map.pop_last() {
assert!(map.iter().all(|(k, _v)| *k < key));
}
assert!(map.is_empty());
Sourcepub fn contains_key<Q>(&self, key: &Q) -> bool
pub fn contains_key<Q>(&self, key: &Q) -> bool
Returns true
if the map contains a value for the specified key.
The key may be any borrowed form of the map’s key type, but the ordering on the borrowed form must match the ordering on the key type.
§Examples
Basic usage:
use rune::alloc::BTreeMap;
let mut map = BTreeMap::new();
map.try_insert(1, "a")?;
assert_eq!(map.contains_key(&1), true);
assert_eq!(map.contains_key(&2), false);
Sourcepub fn get_mut<Q>(&mut self, key: &Q) -> Option<&mut V>
pub fn get_mut<Q>(&mut self, key: &Q) -> Option<&mut V>
Returns a mutable reference to the value corresponding to the key.
The key may be any borrowed form of the map’s key type, but the ordering on the borrowed form must match the ordering on the key type.
§Examples
Basic usage:
use rune::alloc::BTreeMap;
let mut map = BTreeMap::new();
map.try_insert(1, "a")?;
if let Some(x) = map.get_mut(&1) {
*x = "b";
}
assert_eq!(map[&1], "b");
Sourcepub fn get_mut_with<C, Q, E>(
&mut self,
cx: &mut C,
key: &Q,
cmp: fn(_: &mut C, _: &Q, _: &Q) -> Result<Ordering, E>,
) -> Result<Option<&mut V>, E>
pub fn get_mut_with<C, Q, E>( &mut self, cx: &mut C, key: &Q, cmp: fn(_: &mut C, _: &Q, _: &Q) -> Result<Ordering, E>, ) -> Result<Option<&mut V>, E>
Like BTreeMap::get_mut
but allows for custom value comparisons.
The comparison implementation should to be coherent with the ones used for insertion, else unexpected values might be accessed.
Sourcepub fn try_insert(&mut self, key: K, value: V) -> Result<Option<V>, AllocError>where
K: Ord,
pub fn try_insert(&mut self, key: K, value: V) -> Result<Option<V>, AllocError>where
K: Ord,
Inserts a key-value pair into the map.
If the map did not have this key present, None
is returned.
If the map did have this key present, the value is updated, and the old
value is returned. The key is not updated, though; this matters for
types that can be ==
without being identical. See the module-level
documentation for more.
§Examples
Basic usage:
use rune::alloc::BTreeMap;
let mut map = BTreeMap::new();
assert_eq!(map.try_insert(37, "a")?, None);
assert_eq!(map.is_empty(), false);
map.try_insert(37, "b")?;
assert_eq!(map.try_insert(37, "c")?, Some("b"));
assert_eq!(map[&37], "c");
Sourcepub fn try_insert_or(
&mut self,
key: K,
value: V,
) -> Result<&mut V, CustomError<OccupiedError<'_, K, V, A>>>where
K: Ord,
pub fn try_insert_or(
&mut self,
key: K,
value: V,
) -> Result<&mut V, CustomError<OccupiedError<'_, K, V, A>>>where
K: Ord,
Tries to insert a key-value pair into the map, and returns a mutable reference to the value in the entry.
If the map already had this key present, nothing is updated, and an error containing the occupied entry and the value is returned.
§Examples
Basic usage:
use rune::alloc::BTreeMap;
use rune::alloc::error::CustomError;
let mut map = BTreeMap::new();
assert_eq!(map.try_insert_or(37, "a").unwrap(), &"a");
if let CustomError::Custom(err) = map.try_insert_or(37, "b").unwrap_err() {
assert_eq!(err.entry.key(), &37);
assert_eq!(err.entry.get(), &"a");
assert_eq!(err.value, "b");
}
Sourcepub fn remove<Q>(&mut self, key: &Q) -> Option<V>
pub fn remove<Q>(&mut self, key: &Q) -> Option<V>
Removes a key from the map, returning the value at the key if the key was previously in the map.
The key may be any borrowed form of the map’s key type, but the ordering on the borrowed form must match the ordering on the key type.
§Examples
Basic usage:
use rune::alloc::BTreeMap;
let mut map = BTreeMap::new();
map.try_insert(1, "a")?;
assert_eq!(map.remove(&1), Some("a"));
assert_eq!(map.remove(&1), None);
Sourcepub fn remove_entry<Q>(&mut self, key: &Q) -> Option<(K, V)>
pub fn remove_entry<Q>(&mut self, key: &Q) -> Option<(K, V)>
Removes a key from the map, returning the stored key and value if the key was previously in the map.
The key may be any borrowed form of the map’s key type, but the ordering on the borrowed form must match the ordering on the key type.
§Examples
Basic usage:
use rune::alloc::BTreeMap;
let mut map = BTreeMap::new();
map.try_insert(1, "a")?;
assert_eq!(map.remove_entry(&1), Some((1, "a")));
assert_eq!(map.remove_entry(&1), None);
Sourcepub fn retain<F>(&mut self, f: F)
pub fn retain<F>(&mut self, f: F)
Retains only the elements specified by the predicate.
In other words, remove all pairs (k, v)
for which f(&k, &mut v)
returns false
. The elements are visited in ascending key order.
§Examples
use rune::alloc::BTreeMap;
use rune::alloc::prelude::*;
let mut map: BTreeMap<i32, i32> = (0..8).map(|x| (x, x*10)).try_collect()?;
// Keep only the elements with even-numbered keys.
map.retain(|&k, _| k % 2 == 0);
assert!(map.into_iter().eq(vec![(0, 0), (2, 20), (4, 40), (6, 60)]));
Sourcepub fn try_append(
&mut self,
other: &mut BTreeMap<K, V, A>,
) -> Result<(), AllocError>where
K: Ord,
pub fn try_append(
&mut self,
other: &mut BTreeMap<K, V, A>,
) -> Result<(), AllocError>where
K: Ord,
Moves all elements from other
into self
, leaving other
empty.
If a key from other
is already present in self
, the respective
value from self
will be overwritten with the respective value from other
.
§Examples
use rune::alloc::BTreeMap;
let mut a = BTreeMap::new();
a.try_insert(1, "a")?;
a.try_insert(2, "b")?;
a.try_insert(3, "c")?; // Note: Key (3) also present in b.
let mut b = BTreeMap::new();
b.try_insert(3, "d")?; // Note: Key (3) also present in a.
b.try_insert(4, "e")?;
b.try_insert(5, "f")?;
a.try_append(&mut b);
assert_eq!(a.len(), 5);
assert_eq!(b.len(), 0);
assert_eq!(a[&1], "a");
assert_eq!(a[&2], "b");
assert_eq!(a[&3], "d"); // Note: "c" has been overwritten.
assert_eq!(a[&4], "e");
assert_eq!(a[&5], "f");
Sourcepub fn range<Q, R>(&self, range: R) -> Range<'_, K, V> ⓘ
pub fn range<Q, R>(&self, range: R) -> Range<'_, K, V> ⓘ
Constructs a double-ended iterator over a sub-range of elements in the map.
The simplest way is to use the range syntax min..max
, thus range(min..max)
will
yield elements from min (inclusive) to max (exclusive).
The range may also be entered as (Bound<T>, Bound<T>)
, so for example
range((Excluded(4), Included(10)))
will yield a left-exclusive, right-inclusive
range from 4 to 10.
§Panics
Panics if range start > end
.
Panics if range start == end
and both bounds are Excluded
.
§Examples
Basic usage:
use rune::alloc::BTreeMap;
use core::ops::Bound::Included;
let mut map = BTreeMap::new();
map.try_insert(3, "a")?;
map.try_insert(5, "b")?;
map.try_insert(8, "c")?;
for (&key, &value) in map.range((Included(&4), Included(&8))) {
println!("{key}: {value}");
}
assert_eq!(Some((&5, &"b")), map.range(4..).next());
Sourcepub fn range_mut<Q, R>(&mut self, range: R) -> RangeMut<'_, K, V> ⓘ
pub fn range_mut<Q, R>(&mut self, range: R) -> RangeMut<'_, K, V> ⓘ
Constructs a mutable double-ended iterator over a sub-range of elements in the map.
The simplest way is to use the range syntax min..max
, thus range(min..max)
will
yield elements from min (inclusive) to max (exclusive).
The range may also be entered as (Bound<T>, Bound<T>)
, so for example
range((Excluded(4), Included(10)))
will yield a left-exclusive, right-inclusive
range from 4 to 10.
§Panics
Panics if range start > end
.
Panics if range start == end
and both bounds are Excluded
.
§Examples
Basic usage:
use rune::alloc::BTreeMap;
let mut map: BTreeMap<&str, i32> =
[("Alice", 0), ("Bob", 0), ("Carol", 0), ("Cheryl", 0)].try_into()?;
for (_, balance) in map.range_mut("B".."Cheryl") {
*balance += 100;
}
for (name, balance) in &map {
println!("{name} => {balance}");
}
Sourcepub fn entry(&mut self, key: K) -> Entry<'_, K, V, A>where
K: Ord,
pub fn entry(&mut self, key: K) -> Entry<'_, K, V, A>where
K: Ord,
Gets the given key’s corresponding entry in the map for in-place manipulation.
§Examples
Basic usage:
use rune::alloc::BTreeMap;
let mut count: BTreeMap<&str, usize> = BTreeMap::new();
// count the number of occurrences of letters in the vec
for x in ["a", "b", "a", "c", "a", "b"] {
count.entry(x).and_modify(|curr| *curr += 1).or_try_insert(1)?;
}
assert_eq!(count["a"], 3);
assert_eq!(count["b"], 2);
assert_eq!(count["c"], 1);
Sourcepub fn try_split_off<Q>(&mut self, key: &Q) -> Result<BTreeMap<K, V, A>, Error>
pub fn try_split_off<Q>(&mut self, key: &Q) -> Result<BTreeMap<K, V, A>, Error>
Splits the collection into two at the given key. Returns everything after the given key, including the key.
§Examples
Basic usage:
use rune::alloc::BTreeMap;
let mut a = BTreeMap::new();
a.try_insert(1, "a")?;
a.try_insert(2, "b")?;
a.try_insert(3, "c")?;
a.try_insert(17, "d")?;
a.try_insert(41, "e")?;
let b = a.try_split_off(&3)?;
assert_eq!(a.len(), 2);
assert_eq!(b.len(), 3);
assert_eq!(a[&1], "a");
assert_eq!(a[&2], "b");
assert_eq!(b[&3], "c");
assert_eq!(b[&17], "d");
assert_eq!(b[&41], "e");
Sourcepub fn extract_if<F>(&mut self, pred: F) -> ExtractIf<'_, K, V, F, A> ⓘ
pub fn extract_if<F>(&mut self, pred: F) -> ExtractIf<'_, K, V, F, A> ⓘ
Creates an iterator that visits all elements (key-value pairs) in
ascending key order and uses a closure to determine if an element should
be removed. If the closure returns true
, the element is removed from
the map and yielded. If the closure returns false
, or panics, the
element remains in the map and will not be yielded.
The iterator also lets you mutate the value of each element in the closure, regardless of whether you choose to keep or remove it.
If the returned ExtractIf
is not exhausted, e.g. because it is dropped without iterating
or the iteration short-circuits, then the remaining elements will be retained.
Use retain
with a negated predicate if you do not need the returned iterator.
§Examples
Splitting a map into even and odd keys, reusing the original map:
use rune::alloc::{Vec, BTreeMap};
use rune::alloc::prelude::*;
let mut map: BTreeMap<i32, i32> = (0..8).map(|x| (x, x)).try_collect()?;
let evens: BTreeMap<_, _> = map.extract_if(|k, _v| k % 2 == 0).try_collect()?;
let odds = map;
assert_eq!(evens.keys().copied().try_collect::<Vec<_>>()?, [0, 2, 4, 6]);
assert_eq!(odds.keys().copied().try_collect::<Vec<_>>()?, [1, 3, 5, 7]);
Sourcepub fn into_keys(self) -> IntoKeys<K, V, A> ⓘ
pub fn into_keys(self) -> IntoKeys<K, V, A> ⓘ
Creates a consuming iterator visiting all the keys, in sorted order. The
map cannot be used after calling this. The iterator element type is K
.
§Examples
use rune::alloc::{BTreeMap, Vec};
use rune::alloc::prelude::*;
let mut a = BTreeMap::new();
a.try_insert(2, "b")?;
a.try_insert(1, "a")?;
let keys: Vec<i32> = a.into_keys().try_collect()?;
assert_eq!(keys, [1, 2]);
Sourcepub fn into_values(self) -> IntoValues<K, V, A> ⓘ
pub fn into_values(self) -> IntoValues<K, V, A> ⓘ
Creates a consuming iterator visiting all the values, in order by key.
The map cannot be used after calling this. The iterator element type is
V
.
§Examples
use rune::alloc::{BTreeMap, Vec};
use rune::alloc::prelude::*;
let mut a = BTreeMap::new();
a.try_insert(1, "hello");
a.try_insert(2, "goodbye");
let values: Vec<&str> = a.into_values().try_collect()?;
assert_eq!(values, ["hello", "goodbye"]);
Source§impl<K, V, A> BTreeMap<K, V, A>where
A: Allocator,
impl<K, V, A> BTreeMap<K, V, A>where
A: Allocator,
Sourcepub fn iter(&self) -> Iter<'_, K, V> ⓘ
pub fn iter(&self) -> Iter<'_, K, V> ⓘ
Gets an iterator over the entries of the map, sorted by key.
§Examples
Basic usage:
use rune::alloc::BTreeMap;
let mut map = BTreeMap::new();
map.try_insert(3, "c")?;
map.try_insert(2, "b")?;
map.try_insert(1, "a")?;
for (key, value) in map.iter() {
println!("{key}: {value}");
}
let (first_key, first_value) = map.iter().next().unwrap();
assert_eq!((*first_key, *first_value), (1, "a"));
Sourcepub unsafe fn iter_raw(&self) -> IterRaw<K, V> ⓘ
pub unsafe fn iter_raw(&self) -> IterRaw<K, V> ⓘ
Perform a raw iteration over the btree.
§Safety
Caller must ensure that the returned iterator doesn’t outlive self
.
Sourcepub fn iter_mut(&mut self) -> IterMut<'_, K, V> ⓘ
pub fn iter_mut(&mut self) -> IterMut<'_, K, V> ⓘ
Gets a mutable iterator over the entries of the map, sorted by key.
§Examples
Basic usage:
use rune::alloc::BTreeMap;
let mut map = BTreeMap::try_from([
("a", 1),
("b", 2),
("c", 3),
])?;
// add 10 to the value if the key isn't "a"
for (key, value) in map.iter_mut() {
if key != &"a" {
*value += 10;
}
}
Sourcepub fn keys(&self) -> Keys<'_, K, V> ⓘ
pub fn keys(&self) -> Keys<'_, K, V> ⓘ
Gets an iterator over the keys of the map, in sorted order.
§Examples
Basic usage:
use rune::alloc::BTreeMap;
let mut a = BTreeMap::new();
a.try_insert(2, "b")?;
a.try_insert(1, "a")?;
let keys: Vec<_> = a.keys().cloned().collect();
assert_eq!(keys, [1, 2]);
Sourcepub fn values(&self) -> Values<'_, K, V> ⓘ
pub fn values(&self) -> Values<'_, K, V> ⓘ
Gets an iterator over the values of the map, in order by key.
§Examples
Basic usage:
use rune::alloc::{BTreeMap, Vec};
use rune::alloc::prelude::*;
let mut a = BTreeMap::new();
a.try_insert(1, "hello")?;
a.try_insert(2, "goodbye")?;
let values: Vec<&str> = a.values().copied().try_collect()?;
assert_eq!(values, ["hello", "goodbye"]);
Sourcepub fn values_mut(&mut self) -> ValuesMut<'_, K, V> ⓘ
pub fn values_mut(&mut self) -> ValuesMut<'_, K, V> ⓘ
Gets a mutable iterator over the values of the map, in order by key.
§Examples
Basic usage:
use rune::alloc::{BTreeMap, Vec, String};
use rune::alloc::prelude::*;
let mut a = BTreeMap::new();
a.try_insert(1, String::try_from("hello")?)?;
a.try_insert(2, String::try_from("goodbye")?)?;
for value in a.values_mut() {
value.try_push_str("!")?;
}
let mut values = Vec::new();
for value in a.values() {
values.try_push(value.try_clone()?)?;
}
assert_eq!(values, [String::try_from("hello!")?,
String::try_from("goodbye!")?]);
Sourcepub const fn len(&self) -> usize
pub const fn len(&self) -> usize
Returns the number of elements in the map.
§Examples
Basic usage:
use rune::alloc::BTreeMap;
let mut a = BTreeMap::new();
assert_eq!(a.len(), 0);
a.try_insert(1, "a")?;
assert_eq!(a.len(), 1);
Sourcepub const fn is_empty(&self) -> bool
pub const fn is_empty(&self) -> bool
Returns true
if the map contains no elements.
§Examples
Basic usage:
use rune::alloc::BTreeMap;
let mut a = BTreeMap::new();
assert!(a.is_empty());
a.try_insert(1, "a")?;
assert!(!a.is_empty());
Sourcepub fn lower_bound<Q>(&self, bound: Bound<&Q>) -> Cursor<'_, K, V>
pub fn lower_bound<Q>(&self, bound: Bound<&Q>) -> Cursor<'_, K, V>
Returns a Cursor
pointing at the first element that is above the
given bound.
If no such element exists then a cursor pointing at the “ghost” non-element is returned.
Passing Bound::Unbounded
will return a cursor pointing at the first
element of the map.
§Examples
Basic usage:
use rune::alloc::BTreeMap;
use std::ops::Bound;
let mut a = BTreeMap::new();
a.try_insert(1, "a")?;
a.try_insert(2, "b")?;
a.try_insert(3, "c")?;
a.try_insert(4, "c")?;
let cursor = a.lower_bound(Bound::Excluded(&2));
assert_eq!(cursor.key(), Some(&3));
Sourcepub fn lower_bound_mut<Q>(&mut self, bound: Bound<&Q>) -> CursorMut<'_, K, V, A>
pub fn lower_bound_mut<Q>(&mut self, bound: Bound<&Q>) -> CursorMut<'_, K, V, A>
Returns a CursorMut
pointing at the first element that is above the
given bound.
If no such element exists then a cursor pointing at the “ghost” non-element is returned.
Passing Bound::Unbounded
will return a cursor pointing at the first
element of the map.
§Examples
Basic usage:
use rune::alloc::BTreeMap;
use std::ops::Bound;
let mut a = BTreeMap::new();
a.try_insert(1, "a")?;
a.try_insert(2, "b")?;
a.try_insert(3, "c")?;
a.try_insert(4, "c")?;
let cursor = a.lower_bound_mut(Bound::Excluded(&2));
assert_eq!(cursor.key(), Some(&3));
Sourcepub fn upper_bound<Q>(&self, bound: Bound<&Q>) -> Cursor<'_, K, V>
pub fn upper_bound<Q>(&self, bound: Bound<&Q>) -> Cursor<'_, K, V>
Returns a Cursor
pointing at the last element that is below the
given bound.
If no such element exists then a cursor pointing at the “ghost” non-element is returned.
Passing Bound::Unbounded
will return a cursor pointing at the last
element of the map.
§Examples
Basic usage:
use rune::alloc::BTreeMap;
use std::ops::Bound;
let mut a = BTreeMap::new();
a.try_insert(1, "a")?;
a.try_insert(2, "b")?;
a.try_insert(3, "c")?;
a.try_insert(4, "c")?;
let cursor = a.upper_bound(Bound::Excluded(&3));
assert_eq!(cursor.key(), Some(&2));
Sourcepub fn upper_bound_mut<Q>(&mut self, bound: Bound<&Q>) -> CursorMut<'_, K, V, A>
pub fn upper_bound_mut<Q>(&mut self, bound: Bound<&Q>) -> CursorMut<'_, K, V, A>
Returns a CursorMut
pointing at the last element that is below the
given bound.
If no such element exists then a cursor pointing at the “ghost” non-element is returned.
Passing Bound::Unbounded
will return a cursor pointing at the last
element of the map.
§Examples
Basic usage:
use rune::alloc::BTreeMap;
use std::ops::Bound;
let mut a = BTreeMap::new();
a.try_insert(1, "a")?;
a.try_insert(2, "b")?;
a.try_insert(3, "c")?;
a.try_insert(4, "c")?;
let cursor = a.upper_bound_mut(Bound::Excluded(&3));
assert_eq!(cursor.key(), Some(&2));
Trait Implementations§
Source§impl<'a, K, V, A> IntoIterator for &'a BTreeMap<K, V, A>where
A: Allocator,
impl<'a, K, V, A> IntoIterator for &'a BTreeMap<K, V, A>where
A: Allocator,
Source§impl<'a, K, V, A> IntoIterator for &'a mut BTreeMap<K, V, A>where
A: Allocator,
impl<'a, K, V, A> IntoIterator for &'a mut BTreeMap<K, V, A>where
A: Allocator,
Source§impl<K, V, A> IntoIterator for BTreeMap<K, V, A>where
A: Allocator,
impl<K, V, A> IntoIterator for BTreeMap<K, V, A>where
A: Allocator,
Source§impl<K, V, A> Ord for BTreeMap<K, V, A>
impl<K, V, A> Ord for BTreeMap<K, V, A>
1.21.0 · Source§fn max(self, other: Self) -> Selfwhere
Self: Sized,
fn max(self, other: Self) -> Selfwhere
Self: Sized,
Source§impl<K, V, A> PartialOrd for BTreeMap<K, V, A>
impl<K, V, A> PartialOrd for BTreeMap<K, V, A>
Source§impl<'a, K, V, A> TryExtend<(&'a K, &'a V)> for BTreeMap<K, V, A>
impl<'a, K, V, A> TryExtend<(&'a K, &'a V)> for BTreeMap<K, V, A>
Source§impl<K, V, A> TryExtend<(K, V)> for BTreeMap<K, V, A>
impl<K, V, A> TryExtend<(K, V)> for BTreeMap<K, V, A>
Source§fn try_extend<T>(&mut self, iter: T) -> Result<(), Error>where
T: IntoIterator<Item = (K, V)>,
fn try_extend<T>(&mut self, iter: T) -> Result<(), Error>where
T: IntoIterator<Item = (K, V)>,
Source§impl<K, V, A> TryFromIteratorIn<(K, V), A> for BTreeMap<K, V, A>
impl<K, V, A> TryFromIteratorIn<(K, V), A> for BTreeMap<K, V, A>
Source§fn try_from_iter_in<I>(iter: I, alloc: A) -> Result<BTreeMap<K, V, A>, Error>where
I: IntoIterator<Item = (K, V)>,
fn try_from_iter_in<I>(iter: I, alloc: A) -> Result<BTreeMap<K, V, A>, Error>where
I: IntoIterator<Item = (K, V)>,
impl<K, V, A> Eq for BTreeMap<K, V, A>
impl<K, V, A> UnwindSafe for BTreeMap<K, V, A>
Auto Trait Implementations§
impl<K, V, A> Freeze for BTreeMap<K, V, A>where
A: Freeze,
impl<K, V, A> RefUnwindSafe for BTreeMap<K, V, A>
impl<K, V, A> Send for BTreeMap<K, V, A>
impl<K, V, A> Sync for BTreeMap<K, V, A>
impl<K, V, A> Unpin for BTreeMap<K, V, A>where
A: Unpin,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<Q, K> Comparable<K> for Q
impl<Q, K> Comparable<K> for Q
Source§impl<Q, K> Equivalent<K> for Q
impl<Q, K> Equivalent<K> for Q
Source§impl<Q, K> Equivalent<K> for Q
impl<Q, K> Equivalent<K> for Q
Source§impl<Q, K> Equivalent<K> for Q
impl<Q, K> Equivalent<K> for Q
Source§fn equivalent(&self, key: &K) -> bool
fn equivalent(&self, key: &K) -> bool
key
and return true
if they are equal.